Skip to main content

The Use of Heat-Shock-Induced Ectopic Expression to Examine the Functions of Genes Regulating Development

  • Chapter
Heat Shock and Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 17))

Abstract

The beauty of the fruitfly, Drosophila melanogaster, as a system for the study of development derives principally from its amenability to genetic analysis (Morgan 1926). Yet there remain situations where classical genetics fails to address important questions: mutagenesis is by nature random and constrained. Once a gene has been identified, it is usually desirable to alter the sequence of its gene product, or the timing and location of its expression. To do so in a directed manner requires new technology. One successful approach has been the adoption of heat shock promoters to induce ectopic and high-level expression of developmentally active genes in transgenic flies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker BS, Belote JM (1983) Sex determination and dosage compensation in Drosophila melanogaster. Annu Rev Genet 17: 345–393

    Article  PubMed  CAS  Google Scholar 

  • Basler K, Hafen E (1989) Ubiquitous expression of sevenless: position-dependent specification of cell fate. Science 243: 931–934

    Article  PubMed  CAS  Google Scholar 

  • Basler K, Yen D, Tomlinson A, Hafen E (1990) Reprogramming cell fate in the developing Drosophila retina: transformation of R7 cells by ectopic expression of rough. Genes Dev 4: 728–739

    Article  PubMed  CAS  Google Scholar 

  • Bishop JG III, Corces VG (1988) Expression of an activated ras gene causes developmental abnormalities in transgenic Drosophila melanogaster. Genes Dev 2: 567–577

    Article  PubMed  CAS  Google Scholar 

  • Boggs RT, Gregor P, Idriss S, Belote J, McKeown M (1987) Regulation of sexual differentiation in D. melanogaster via alternative splicing of RNA from the transformer gene. Cell 50: 739–747

    Article  PubMed  CAS  Google Scholar 

  • Bowtell DL, Simon MA, Rubin G (1989) Ommatidia in the developing Drosophila eye require and can respond to sevenless for only a restricted period. Cell 58: 931–936

    Article  Google Scholar 

  • Driever W, Nusslein-Volhard C (1988) The bicoid protein determines position in the Drosophila embryo in a concentration dependent manner. Cell 54: 95–104

    Article  PubMed  CAS  Google Scholar 

  • Eberlein S (1986) Stage specific embryonic defects following heat shock in Drosophila. Dev Genet 6: 179–197

    Article  Google Scholar 

  • Garcia-Bellido A (1975) Genetic control of wing disc development in Drosophila. CIBA Found Symp 29: 161–182

    PubMed  Google Scholar 

  • Gehring WJ, Hiromi Y (1986) Homeotic genes and the homeobox. Annu Rev Genet 20: 147–173

    Article  PubMed  CAS  Google Scholar 

  • Gibson G, Gehring WJ (1988) Head and thoracic transformations caused by ectopic expression of Antennapedia during Drosophila development. Development 102: 657–675

    Google Scholar 

  • Gibson G, Schier A, LeMotte P, Gehring WJ (1990) The specificities of Sex combs reduced and Antennapedia are defined by a distinct portion of each protein which includes the homeodomain. Cell 62: 1087–1103

    Article  PubMed  CAS  Google Scholar 

  • Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyses site-specific recombination in the Drosophila genome. Cell 59: 499–509

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Reyes A, Morata G (1990) The developmental effect of overexpressing a Ubx product in Drosophila embryos is dependent on its interactions with other homeotic products. Cell 61: 515–522

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Reyes A, Urquia N, Gehring WJ, Struhl G, Morata G (1990) Are cross-regulatory interactions between homeotic genes functionally significant? Nature 344: 78–80

    Article  PubMed  CAS  Google Scholar 

  • Goto T, Macdonald P, Maniatis T (1989) Early and late patterns of even skipped expression are controlled by distinct regulatory elements that respond to different spatial cues. Cell 57: 413–422

    Article  PubMed  CAS  Google Scholar 

  • Hafen E, Basler K, Edstroem J, Rubin GM (1987) Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 236: 55–63

    Article  PubMed  CAS  Google Scholar 

  • Harding K, Hoey T, Warrior R, Levine M (1989) Autoregulatory and gap gene response elements of the even skipped promoter of Drosophila. EMBO J 8: 1205–1212

    PubMed  CAS  Google Scholar 

  • Ingham PW (1988) The molecular genetics of embryonic pattern formation in Drosophila. Nature 335: 25–33

    Article  PubMed  CAS  Google Scholar 

  • Ish-Horowicz D, Gyurkovics H (1988) Ectopic segmentation gene expression and metameric regulation in Drosophila. Development (Suppl) 104: 67–73

    Google Scholar 

  • Ish-Horowicz D, Pinchin SM (1987) Pattern abnormalities induced by ectopic expression of the Drosophila gene hairy associated with repression of ftz transcription. Cell 51: 405–415

    Article  PubMed  CAS  Google Scholar 

  • Ish-Horowicz D, Pinchin SM, Ingham PW, Gyurkovics HG (1989) Autocatalytic ftz activation and metameric instability induced by ectopic ftz expression. Cell 57: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Kaufman TC, Tasaka S, Suzuki DT (1973) The interaction of two complex loci, zeste and bithorax in Drosophila melanogaster. Genetics 75: 299–321

    PubMed  CAS  Google Scholar 

  • Keleher CA, Goutte C, Johnson AD (1988) The yeast cell-type specific repressor a2 acts cooperatively with a non-cell-type-specific protein. Cell 53: 927–936

    Article  PubMed  CAS  Google Scholar 

  • Kessel M. Balling R, Gruss P (1990) Variations of cervical vertebrae after expression of a Hox-1.1 transgene in mice. Cell 61: 301–308

    Article  PubMed  CAS  Google Scholar 

  • Kimmel BE, Heberlein U, Rubin GM (1990) The homeodomain protein rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. Gene Dev 4: 712–727

    Article  PubMed  CAS  Google Scholar 

  • Klemenz R, Hultmark D, Gehring WJ (1985) Selective translation of heat shock mRNA in Drosophila melanogaster depends on sequence information in the leader. EMBO J 4: 2053–2060

    PubMed  CAS  Google Scholar 

  • Kuziora MA, McGinnis WJ (1988) Autoregulation of a Drosophila homeotic selector gene. Cell 55: 477–485

    Article  PubMed  CAS  Google Scholar 

  • Kuziora MA, McGinnis WJ (1989) A homeodomain substitution changes the regulatory specificity of the Deformed protein in Drosophila embryos. Cell 59: 563–571

    Article  PubMed  CAS  Google Scholar 

  • Laski FA, Rubin GM (1989) Analysis of the cis—acting requirements for germ-line-specific splicing of the P-element ORF2–ORF3 intron. Genes Dev 3: 720–728

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1980) Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol 77: 463–479

    Article  PubMed  CAS  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 55: 1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Lis JT, Simon JA, Sutton CA (1983) New heat shock puffs and ß-galactosidase activity resulting from transformation of Drosophila with an hsp70-lacZ hybrid gene. Cell 35: 403–410

    Article  PubMed  CAS  Google Scholar 

  • Mann R, Hogness DS (1990) Functional dissection of Ultrabithorax proteins in D. melanogaster. Cell 60: 579–610

    Article  Google Scholar 

  • Martinez-Arias A (1989) A cellular basis for pattern formation in the insect epidermis. Trends Genetics 5: 262–267

    Article  CAS  Google Scholar 

  • McKeown M, Belote JM, Boggs RT (1988) Ectopic expression of the female transformer gene product leads to female differentiation of chromosomally male Drosophila. Cell 53: 887–895

    Article  PubMed  CAS  Google Scholar 

  • Mitchell HK, Lipps L (1978) Heat shock and phenocopy induction in Drosophila. Cell 15: 907–918

    Article  PubMed  CAS  Google Scholar 

  • Mlodzik M, Gibson G, Gehring WJ (1990) Effects of ectopic expression of caudal during Drosophila development, Development 109: 271–277

    PubMed  CAS  Google Scholar 

  • Monsma SA, Ard R, Lis J, Wolfner M (1988) Localized heat shock induction in Drosophila melanogaster. J Exp Zool 247: 279–284

    Article  PubMed  CAS  Google Scholar 

  • Morata G, Garcia-Bellido A (1976) Developmental analysis of some mutants of the bithorax system of Drosophila. Wilhelm Roux Arch Dev Biol 179: 125–143

    Article  Google Scholar 

  • Morata G, Lawrence P (1977) Homeotic genes, compartments, and cell determination in Drosophila. Nature 265: 211–216

    Article  PubMed  CAS  Google Scholar 

  • Morgan TH (1926) The theory of the gene. Reprinted by Garland New York, 1989

    Google Scholar 

  • Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in the Drosophila embryo. Nature 287: 795–801

    Article  PubMed  CAS  Google Scholar 

  • O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84: 9123–9127

    Article  PubMed  Google Scholar 

  • Parker-Thomberg J, Bonner JJ (1987) Mutations that induce the heat shock response of Drosophila. Cell 51: 763–772

    Article  Google Scholar 

  • Pelham HRB (1982) A regulatory upstream promoter element in the Drosophila hsp70 heat shock gene. Cell 30: 517–528

    Article  PubMed  CAS  Google Scholar 

  • Petersen RB, Linguist S (1989) Regulation of hsp70 synthesis by messenger RNA degradation. Cell Regul. 1: 135–149

    PubMed  CAS  Google Scholar 

  • Poole SJ, Kornberg T (1988) Modifying expression of the engrailed gene of Drosophila melanogaster. Development (Suppl) 104: 85–94

    Google Scholar 

  • Postlethwait JH, Schneiderman HA (1971) Pattern formation and determination in the antenna of the homeotic mutant Antennapedia of Drosophila melanogaster. Dev Biol 25: 606–640

    Article  PubMed  CAS  Google Scholar 

  • Ptashne M (1988) How eukaryotic transcriptional activators work. Nature 335: 683–689

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Spradling AC (1982) Genetic’transformation of Drosophila with transposable element vectors. Science 218: 348–353

    Article  PubMed  CAS  Google Scholar 

  • Ruiz i Altaba A, Melton DA (1989) Involvement of the Xenopus homeobox gene Xhox3 in pattern formation along the anterior—posterior axis. Cell 57: 317–326

    Article  Google Scholar 

  • Schneuwly S, Klemenz R, Gehring WJ (1987) Redesigning the body plan of Drosophila by ectopic expression of the homeotic gene Antennapedia. Nature 325: 816–818

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JCW, Walldorf U, Hug P, Gehring WJ (1989) Fruit flies with additional expression of the elongation factor EF-la live longer. Proc Natl Acad Sci USA 86: 7520–7521

    Article  PubMed  CAS  Google Scholar 

  • Stellar H, Pirotta V (1986) P transposons controlled by the heat shock promoter. Mol Cell Biol 6: 1640–1649

    Google Scholar 

  • Stern S, Tanaka M, Herr W (1989) The Oct-1 homeodomain directs formation of a multiprotein-DNA complex with the HSV transactivator VP16. Nature 314: 624–630

    Article  Google Scholar 

  • Stringham E, Jones D, Candido P (1990) Studies of hsp-16 and ubq-1 expression in the nematode Caenorhabditis elegans (Abstr). Worm Breeder’s Gaz 11: (2): 25

    Google Scholar 

  • Struhl G (1985) Near-reciprocal phenotypes caused by inactivation or indiscriminate expression of the Drosophila segmentation gene ftz. Nature 318: 677–680

    Article  PubMed  CAS  Google Scholar 

  • Struhl G (1989a) Differing strategies for organizing anterior and posterior body pattern in Drosophila embryos. Nature 338: 741–744

    Article  PubMed  CAS  Google Scholar 

  • Struhl G (1989b) Morphogen gradients and the control of body pattern in insect embryos. CIBA Found Symp 144: 65–91

    PubMed  CAS  Google Scholar 

  • Tomlinson A (1988) Cellular interactions in the developing Drosophila eye. Development 104: 183–193

    PubMed  CAS  Google Scholar 

  • Webster GC, Webster SL (1983) Decline in synthesis of elongation factor one (EF-1) precedes the decreased synthesis of total protein in ageing Drosophila melanogaster. Mech Ageing Dev 22: 121–128

    Article  PubMed  CAS  Google Scholar 

  • Zagotta WN, Germeraad S, Garber S, Hoshi T, Aldrich RW (1989) Properties of ShB A-type potassium channels expressed in Shaker mutant Drosophila by germline transformation. Neuron 3: 773–782

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gibson, G. (1991). The Use of Heat-Shock-Induced Ectopic Expression to Examine the Functions of Genes Regulating Development. In: Hightower, L., Nover, L. (eds) Heat Shock and Development. Results and Problems in Cell Differentiation, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46712-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46712-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21993-5

  • Online ISBN: 978-3-540-46712-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics