Skip to main content

Heat Shock Effects in Snail Development

  • Chapter
Heat Shock and Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 17))

Abstract

In the study of the mechanisms underlying embryonic development, a variety of noxious treatments have been applied in the past. At the present, disturbing normal development by external influences remains a common method in experimental embryology. Heat shock has been used for a long time in this sense in a variety of organisms such as Amphibia, chicks, snails, Drosophila,and so on. These studies have in common that the defects are stage specific, depending on the period of development at which heat shock is applied. Which developmental biologist could foresee that heat shock would play such a pivotal role in molecular biology in the research on gene regulation? The discovery of the induction of a unique set of puffs by heat shock (Ritossa 1962) opened this field of investigation. Only about one decade later, it was demonstrated that a specific set of polypeptides was synthesized after exposure to heat, corresponding to a specific set of mRNAs. The response to heat is now known as a universal reaction of almost every living organism. It is even a response to stress in general. The heat shock genes and their products in different species show a high degree of homology. Their conservation during evolution suggests the early development of an essential function in all organisms (Schlesinger et al. 1982; Craig 1985; Lindquist 1986). This has been strengthened by the fact that their activity is not only influenced by external factors, but also fluctuates intrinsically, e.g., during the cell division cycle and embryonic development and differentiation. At the present, heat shock research is again concentrating on embryology. It is focused upon two main levels at which heat shock and development are cross-linked, i.e., at the levels of morphogenesis and gene regulation. Although these fields of investigation are still rather separate, they may converge in the future when our insights in both will have progressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altschuler M, Mascarenhas JP (1982) The synthesis of heat shock and normal proteins at high temperatures in plants and their possible roles in survival under heat stress. In: Schlesinger MJ, Ashburner M, Tissières A (eds) Heat shock from bacteria to man. Cold Spring Harbor Laboratory, New York, pp 321–327

    Google Scholar 

  • Atkinson BG, Walden DB (eds) (1985) Changes in eukaryotic gene expression in response to environmental stress. Academic Press, Orlando

    Google Scholar 

  • Bensaude O, Babinet C, Morange M, Jacob J (1983) Heat shock proteins, first major products of zygotic gene activity in mouse embryo. Nature 305: 331–333

    Article  PubMed  CAS  Google Scholar 

  • Bergh S, Arking R (1984) Developmental profile of the heat shock response in early embryos of Drosophila. J Exp Zool 231: 379–391

    Article  PubMed  CAS  Google Scholar 

  • Bienz M (1984) Developmental control of the heat shock response in Xenopus. Proc Natl Acad Sci USA 81: 3138–3142

    Article  PubMed  CAS  Google Scholar 

  • Bienz M, Pelham HRB (1987) Mechanisms of heat shock gene activation in higher eukaryotes. Adv Genet 24: 31–72

    Article  PubMed  CAS  Google Scholar 

  • Bond U, Schlesinger MJ (1987) Heat shock proteins and development. Adv Genet 24:1–29 Boon-Niermeijer EK (1975) The effect of puromycin on the early cleavage cycles and morphogenesis of the pond snail Lymnaea stagnalis. Wilhelm Roux’s Arch 177: 29–40

    Google Scholar 

  • Boon-Niermeijer EK (1976) Morphogenesis after heat shock during the cell cycle of Lymnaea: a new interpretation. Wilhelm Roux’s Arch 180: 241–252

    Article  Google Scholar 

  • Boon-Niermeijer EK (1987) Responses of a developing organism upon heat stress. A study on Lymnaea stagnalis. Thesis, State University of Utrecht, Utrecht

    Google Scholar 

  • Boon-Niermeijer EK, Van de Scheur H (1984) Thermosensitivity during embryonic development of Lymnaea stagnalis ( Mollusca ). J Therm Biol 9: 265–269

    Google Scholar 

  • Boon-Niermeijer EK, Tuyl M, Van de Scheur H (1986) Evidence for two states of thermotolerance. Int J Hyperthermia 2: 93–105

    Article  PubMed  CAS  Google Scholar 

  • Boon-Niermeijer EK, Souren JEM, Van Wijk R (1987) Thermotolerance induced by 2,4-dinitrophenol. Int J Hyperthermia 3: 133–141

    Article  PubMed  CAS  Google Scholar 

  • Boon-Niermeijer EK, Souren JEM, De Waal AM, Van Wijk R (1988a) Thermotolerance induced by heat and ethanol. Int J Hyperthermia 4: 211–222

    Article  PubMed  CAS  Google Scholar 

  • Boon-Niermeijer EK, De Waal AM, Souren JEM, Van Wijk R (1988b) Heat-induced changes in thermosensitivity and gene expression during development. Dev Growth Differ 30: 705–715

    Article  Google Scholar 

  • Browder LW, Pollock M, Heikkila JJ, Wilkes J, Wang T, Krone P, Ovsenek N, Kloc M (1987) Decay of the oocyte-type heat shock response of Xenopus laevis. Dev Biol 124: 191–199

    Article  PubMed  CAS  Google Scholar 

  • Browder LW, Pollock M, Nickells RW, Heikkila JJ, Winning RS (1989) Developmental regulation of the heat-shock response. In: DiBerardino M, Etkin LD (eds) Developmental biology: a comprehensive synthesis. Plenum, New York, pp 97–147 (Genomic adaptability in somatic cell specialization, vol 6 )

    Google Scholar 

  • Burdon RH (1986) Heat shock and the heat shock proteins. Biochem J 240: 313–324

    PubMed  CAS  Google Scholar 

  • Cooke J, Zeeman EC (1976) A clock and wavefront model for control of the numbèr of repeated structures during animal morphogenesis. J Theor Biol 58: 455–476

    Article  PubMed  CAS  Google Scholar 

  • Craig EA (1985) The heat shock response. CRC Crit Rev Biochem 18: 239–280

    Article  PubMed  CAS  Google Scholar 

  • Davis RE, King ML (1989) The developmental expression of the heat-shock response in Xenopus laevis. Development 105: 213–222

    PubMed  CAS  Google Scholar 

  • Eberlein S, Mitchell HK (1987) Protein synthesis patterns following stage-specific heat shock in early Drosophila embryos. Mol Gen Genet 210: 407–412

    Article  PubMed  CAS  Google Scholar 

  • Edwards MJ (1986) Hyperthermia as a teratogen: a review of experimental studies and their clinical significance. Teratog Carcinog Mutagen 6: 563–582

    Article  PubMed  CAS  Google Scholar 

  • Elsdale T, Davidson D (1986) Somitogenesis in the frog. In: Bellairs R, Ede DA, Lash JW (eds) Somites in developing embryos. Plenum, New York, pp 119–134

    Google Scholar 

  • Elsdale T, Davidson D (1987) Timekeeping by frog embryos, in normal development and after heat shock. Development 99: 41–49

    PubMed  CAS  Google Scholar 

  • Elsdale T, Pearson M, Whitehead M (1976) Abnormalities in somite segmentation following heat shock to Xenopus embryos. J Embryol Exp Morphol 35: 625–635

    PubMed  CAS  Google Scholar 

  • Geilenkirchen WLM (1966) Cell division and morphogenesis of Limnaea eggs after treatment with heat pulses at successive stages in early division cycles. J Embryol Exp Morphol 16: 321–337

    PubMed  CAS  Google Scholar 

  • German J (1984) Embryonic stress hypothesis of teratogenesis. Am J Med 76: 293–301

    Article  PubMed  CAS  Google Scholar 

  • German J, Louie E, Banerjee D (1986) The heat shock response in vivo: experimental induction during mammalian organogenesis. Teratog Carcinog Mutagen 6: 555–562

    Article  PubMed  CAS  Google Scholar 

  • Graziosi G, Micali F, Marzari R, De Christini F, Savioni A (1980) Variability of response of early Drosophila embryos to heat shock. J Exp Zool 214: 141–145

    Article  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum, New York

    Book  Google Scholar 

  • Hall BG (1983) Yeast thermotolerance does not require protein synthesis. J Bacteriol 157: 1363–1365

    Google Scholar 

  • Hallberg RL, Kraus KW, Hallberg EM (1985) Induction of acquired thermotolerance in Tetrahymena thermophila: effects of protein synthesis inhibitors. Mol Cell Biol 15: 2061–2069

    Google Scholar 

  • Haveman J, Li GC, Mak JY, Kipp JBA (1986) Chemically induced resistance to heat treatment and stress protein synthesis in cultured mammalian cells. Int J Radiat Biol 50: 51–64

    Article  CAS  Google Scholar 

  • Heikkila JJ, Kloc M, Bury J, Schultz GA, Browder LW (1985) Acquisition of the heat-shock response and thermotolerance during early development of Xenopus laevis. Dev Biol 107: 483–489

    Article  PubMed  CAS  Google Scholar 

  • Horrell A, Shuttleworth J, Colman A, (1987) Transcript levels and translational control of hsp70 synthesis in Xenopus oocytes. Genes and Dev 1: 433–444

    Article  PubMed  CAS  Google Scholar 

  • Howlett SK (1986) The effect of inhibiting DNA replication in the one-cell mouse embryo. Wilhelm Roux’s Arch Dev Biol 195: 499–505

    Article  CAS  Google Scholar 

  • Kimmel CB, Sepich DS, Trevarrow B (1988) Development of segmentation in zebrafish. Development 104, suppl: 197–207

    Google Scholar 

  • King ML, Davis R (1987) Do Xenopus oocytes have a heat shock response? Dev Biol 119: 532–539

    Article  PubMed  CAS  Google Scholar 

  • Landry J, Chrétien P (1983) Relationship between hyperthermia-induced heat-shock proteins and thermotolerance in Morris hepatoma cells. Can J Biochem Cell Biol 61: 428–437

    Article  PubMed  CAS  Google Scholar 

  • Laszlo A (1988) Evidence for two states of thermotolerance in mammalian cells. Int J Hyperthermia 4: 513–526

    Article  PubMed  CAS  Google Scholar 

  • Lewis MJ, Pelham HRB (1985) Involvement of ATP in the nuclear and nucleolar functions of the 70 kD heat shock protein. EMBO J 4: 3137–3143

    PubMed  CAS  Google Scholar 

  • Li GC (1985) Elevated levels of 70,000 dalton heat shock protein in transiently thermotolerant Chinese hamster fibroblasts and in their stable heat resistant variants. Int J Radiat Oncol Biol Phys 11: 165–177

    Article  PubMed  CAS  Google Scholar 

  • Li GC, Laszlo A (1985) Thermotolerance in mammalian cells: a possible role for heat shock proteins. In: Atkinson BG, Walden DB (eds) Changes in eukaryotic gene expression in response to environmental stress. Academic Press, Orlando, pp 227–254

    Chapter  Google Scholar 

  • Lindquist S (1986) The heat shock response. Annu Rev Biochem 55: 1151–1191

    Article  PubMed  CAS  Google Scholar 

  • Mee JE, French V (1986a) Disruption of segmentation in a short germ insect embryo. I. The location of abnormalities induced by heat shock. J Embryol Exp Morphol 96: 245–266

    Google Scholar 

  • Mee JE, French V (1986b) Disruption of segmentation in a short germ insect embryo. II. The structure of segmental abnormalities induced by heat shock. J Embryol Exp Morphol 96: 267–294

    Google Scholar 

  • Miller D, McLennan AG (1988a) The heat shock response of the cryptobiotic brine shrimp Artemia. I. A comparison of the thermotolerance of cysts and larvae. J Therm Biol 13: 119–123

    Google Scholar 

  • Miller D, McLennan AG (1988b) The heat shock response of the cryptobiotic brine shrimp Artemia. II. Heat shock proteins. J Therm Biol 13: 125–134

    Google Scholar 

  • Mirkes PE, (1987) Hyperthermia-induced heat shock response and thermotolerance in postimplantation rat embryos. Dev Biol 119: 115–122

    Article  PubMed  CAS  Google Scholar 

  • Mitchell HK, Petersen NS (1982) Heat shock induction of abnormal morphogenesis in Drosophila. In: Schlesinger MJ, Ashburner M, Tissières A (eds) Heat shock from bacteria to man. Cold Spring Harbor Laboratory, New York, pp 337–344

    Google Scholar 

  • Muller WU, Li GC, Goldstein LS (1985) Heat does not induce synthesis of heat shock proteins or thermotolerance in the earliest stage of mouse embryo development. Int J Hyperthermia 1: 97–102

    Article  PubMed  CAS  Google Scholar 

  • Nickells RW, Browder LW (1985) Region-specific heat-shock protein synthesis correlates with a biphasic acquisition of thermotolerance in Xenopus laevis embryos. Dev Biol 112: 391–395

    Article  CAS  Google Scholar 

  • Nickells RW, Browder LW (1988) A role for glyceraldehyde-3-phosphate dehydrogenase in the development of thermotolerance in Xenopus laevis embryos. J Cell Biol 107: 1901–1909

    Article  PubMed  CAS  Google Scholar 

  • Nover L (ed) (1984) Heat shock response in eukaryotic cells. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Nover L (ed) (1991) Heat shock response. CRC Press, Boca Raton, Fd

    Google Scholar 

  • Pearson M, Elsdale T (1979) Somitogenesis in amphibian embryos. I. Experimental evidence for an interaction between two temporal factors in the specification of somite pattern. J Embryol Exp Morphol 51: 27–50

    Google Scholar 

  • Pelham HRB (1984) Hsp 70 accelerates the recovery of nucleolar morphology after heat shock. EMBO J 3: 3095–3100

    PubMed  CAS  Google Scholar 

  • Petersen NS, Mitchell HK (1982) Effects of heat shock on gene expression during development: induction and prevention of the multihair phenocopy in Drosophila. In: Schlesinger MJ, Ashburner M, Tissières A (eds) Heat shock from bacteria to man. Cold Spring Harbor Laboratory, New York pp 345–352

    Google Scholar 

  • Primmett DRN, Stern CD, Keynes RJ (1988) Heat shock causes repeated segmental anomalies in the chick embryo. Development 104: 331–339

    PubMed  CAS  Google Scholar 

  • Primmett DRN, Norris WE, Carlson GJ, Keynes RJ,Stern CD (1989) Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. Development 105: 119130

    Google Scholar 

  • Raven C P (1942) The influence of lithium upon the development of the pond snail, Limnaea stagnalis L. Proc K Ned Akad Wet, Amsterdam 45: 856–860

    CAS  Google Scholar 

  • Raven C P (1975) Development. In: Fretter V, Peake J (eds) Functional anatomy and physiology (Pulmonates, vol 1 ). Academic Press, New York, pp 367–400

    Google Scholar 

  • Ritossa FM (1962) A new puffing pattern induced by heat shock and DNP in Drosophila. Experientia 18: 571–573

    Article  CAS  Google Scholar 

  • Roccheri MC, Di Bernardo MG, Giudice G (1981) Synthesis of heat-shock proteins in developing sea urchins. Dev Biol 83: 173–177

    Article  PubMed  CAS  Google Scholar 

  • Schamhart DHJ, Van Walraven HS, Wiegant FAC, Linnemans WAM, Van Rijn J, Van den Berg J, Van Wijk R (1984) Thermotolerance in cultured hepatoma cells: cell viability, cell morphology, protein synthesis, and heat shock proteins. Radiat Res 98: 82–95

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger MJ (1986) Heat shock proteins: the search for functions. J Cell Biol 103:321–325 Schlesinger MJ, Ashburner M, Tissières A (eds) ( 1982 ) Heat shock from bacteria to man. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sconzo G, Roccheri MC, Oliva D, La Rosa M, Giudice G (1985) Territorial localization of heat shock mRNA production in sea urchin gastrulae. Cell Biol Int Rep 9: 877–881

    Article  PubMed  CAS  Google Scholar 

  • Shiota K (1988) Induction of neural tube defects and skeletal malformations in mice following brief hyperthermia in utero. Biol Neonate 53: 86–97

    Article  PubMed  CAS  Google Scholar 

  • Slack JMW (1983) From egg to embryo: determinative events in early development. Cambridge University Press, Cambridge (Developmental and cell biology series, vol 13 )

    Google Scholar 

  • Stern CD, Bellairs R (1984) Mitotic activity during somite segmentation in the early chick embryo. Anat Embryol 169: 97–102

    Article  PubMed  CAS  Google Scholar 

  • Stern CD, Fraser SE, Keynes RJ, Primmett DRN (1988) A cell lineage analysis of segmentation in the chick embryo. Development 104, supp1: 23l - 244

    Google Scholar 

  • Subjeck JR, Shyy TT (1986) Stress protein systems of mammalian cells. Am J Physiol 250:C1—C17 Summerbell D, Lewis JH, Wolpert L (1973) Positional information in chick limb morphogenesis. Nature 224: 492–496

    Google Scholar 

  • Timmermans LPM (1969) Studies on shell formation in Molluscs. Neth J Zool 19: 417–523

    CAS  Google Scholar 

  • Tomasovic SP, Steck PA, Heitzman D (1983) Heat-stress proteins and thermal resistance in rat mammary tumor cells. Radiat Res 95: 399–413

    Article  PubMed  CAS  Google Scholar 

  • Van den Biggelaar JAM (1971a) Timing of the phases of the cell cycle with tritiated thymidine and Feulgen cytophotometry during the period of synchronous division in Lymnaea. J Embryol Exp Morphol 26: 351–366

    PubMed  Google Scholar 

  • Van den Biggelaar JAM (197 lb) Timing of the phases of the cell cycle during the period of asynchronous division up to the 49-cell stage in Lymnaea. J Embryol Exp Morphol 26:367–391

    Google Scholar 

  • Van Wijk R, Otto AM, Jimenez de Asua L (1984) Effects of serum and growth factors on heat sensitivity in Swiss mouse 3T3 cells, J Cell Physiol 119: 155–162

    Article  PubMed  Google Scholar 

  • Veini M, Bellairs R (1986) Heat shock effects in chick embryos. In: Bellairs R, Ede DA, Lash JW (eds) Somites in developing embryos. Plenum, New York, pp 135–145

    Google Scholar 

  • Verdonk NH (1965) Morphogenesis of the head region in Lymnaea stagnalis L. Thesis, University of Utrecht, Utrecht

    Google Scholar 

  • Verdonk NH, De Groot SJ (1970) Periodic changes in sensitivity of Lymnaea eggs to a heat shock during early development. Proc K Ned Acad Wet C73: 171–185

    Google Scholar 

  • Visschedijk AHJ (1953) The effect of a heat shock on morphogenesis in Lymnaea stagnalis. Proc K Ned Akad Wet C56: 590–596

    Google Scholar 

  • Walsh DA, Klein NW, Hightower LE, Edwards MJ (1987) Heat shock and thermotolerance during early rat embryo development. Teratology 36: 181–191

    Article  PubMed  CAS  Google Scholar 

  • Walsh DA, Li K, Speirs J, Crowther CE, Edwards MJ (1989) Regulation of the inducible heat shock 71 genes in early neuronal development of cultured rat embryos. Teratology 40: 321–334

    Article  PubMed  CAS  Google Scholar 

  • Watson K, Dunlop G, Cavicchioli R (1984) Mitochondrial and cytoplasmic protein syntheses are not required for heat shock acquisition of ethanol and thermotolerance in yeast. FEBS Lett 172: 299–302

    Article  PubMed  CAS  Google Scholar 

  • Widelitz RB, Magun BE, Gemer EW (1986) Effects of cycloheximide on thermotolerance expression, heat shock protein synthesis, and heat shock protein mRNA accumulation in rat fibroblasts. Mol Cell Biol 6: 1088–1094

    PubMed  CAS  Google Scholar 

  • Wiegant FAC, Tuyl M, Linnemans WAM (1985) Calmodulin inhibitors potentiate hyperthermic cell killing. Int J Hyperthermia 1: 157–169

    Article  PubMed  CAS  Google Scholar 

  • Wittig S, Hensse S, Keitel C, Elsner C, Wittig B (1983) Heat shock gene expression is regulated during teratocarcinoma cell differentiation and early embryonic development. Dev Biol 96: 507–514

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boon-Niermeijer, E.K. (1991). Heat Shock Effects in Snail Development. In: Hightower, L., Nover, L. (eds) Heat Shock and Development. Results and Problems in Cell Differentiation, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46712-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46712-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21993-5

  • Online ISBN: 978-3-540-46712-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics