Skip to main content

Transcriptional Regulation of Human Hsp70 Genes: Relationship Between Cell Growth, Differentiation, Virus Infection, and the Stress Response

  • Chapter
Heat Shock and Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 17))

Abstract

Our understanding of the regulation of the 70-kD family of heat shock genes during human development is necessarily reliant on information obtained from animal studies and from human cell lines which can be induced to differentiate. It has been reported that expression of certain members of the mouse 70-kD heat shock family is regulated during embryogenesis (Bensaude et al. 1983; Bensaude and Morange 1983; Kothary et al. 1987; see Chap. 10) and during spermatogenesis (Krawczyk et al. 1987a; Zakeri and Wolgemuth 1987; Allen et al. 1988; Zakeri et al. 1988; see Chap. 9). Such studies suggest that expression of human heat-shock genes is developmentally regulated. One can also argue, based on our current understanding of the function of this family of genes, that the 70-kD heat shock proteins must play an important role during development and that their expression must, of necessity, be tightly regulated during this process. Heat shock proteins appear to participate in the assembly-disassembly of macromolecular complexes (Georgopoulos and Ang 1990), in transport of polypeptides into organelles such as mitochondria (Chirico et al. 1988; Deshaies et al. 1988; Kang et al. 1990), in trafficking of polypeptides through the endoplasmic reticulum (Dorner et al. 1987), in vesicular uncoating (Ungewickell 1985), in the protection of newly synthesized proteins (Beckmann et al. 1990), and in protein degradation (Chiang et al. 1989). All of these processes must be critical to the successful execution of developmental programs, during which cells alter their patterns of protein synthesis and secretion respond to chemical and hormonal mediators, undergo morphological changes, migrate and interact with other cells, and undergo changes in their growth state. Considering also, as will be detailed in this chapter, the unique ability of the human hsp70 genes to show altered expression in response to environmental stimuli, it seems quite likely that the expression of these genes is highly regulated during development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abravaya K, Phillips B, Morimoto RI (1991a) Heat shock-induced interactions of heat shock transcription factor and the human hsp70 promoter examined by in vivo footprinting. Mol Cell Biol 11: 586592

    Google Scholar 

  • Abravaya K, Phillips B, Morimoto RI (199 lb) Attenuation of the Heat Shock Response in HeLa Cells is Mediated by the Release of Bound HSF and is Modulated by Changes in Growth and Heat Shock Temperatures. Genes and Development (in press)

    Google Scholar 

  • Albrecht MA, DeLuca NA, Byrn RA, Schaffer PA, Nammer SM (1989) The herpes simplex virus immediate-early protein, ICP4, is required to potentiate replication of human immunodeficiency virus in CD4+ lymphocytes. J Virol 63: 1861–1868

    PubMed  CAS  Google Scholar 

  • Allen RL, O’Brien DA, Eddy EM (1988) A novel hsp70-like protein (P70) is present in mouse spermatogenic cells. Mol Cell Biol 8: 828–832

    PubMed  CAS  Google Scholar 

  • Amin J, Ananthan J, Voellmy R (1988) Key features of heat shock regulatory elements. Mol Cell Biol 8: 3761–3769

    PubMed  CAS  Google Scholar 

  • Beckmann RP, Mizzen LA, Welch WA (1990) Interaction of hsp70 with newly synthesized proteins:implications for protein folding and assembly. Science 248: 850–854

    Article  PubMed  CAS  Google Scholar 

  • Bensaude O, Babinet C, Morange M, Jacob F (1983) Heat shock proteins, first major products of zygotic gene activity in mouse embryos. Nature (Lond) 305: 331–333

    Article  CAS  Google Scholar 

  • Bensaude O, Morange M (1983) Spontaneous high expression of heat shock protein in mouse embryonal carcinoma cells and ectoderm from day 8 mouse embryo. EMBO J 2: 173–177

    PubMed  CAS  Google Scholar 

  • Brunet LJ, Berk M (1988) Concentration dependence of transcriptional transactivation in inducible Ela-containing human cells. Mol Cell Biol 8: 4799–4807

    PubMed  CAS  Google Scholar 

  • Chiang HL, Terlecky SR, Plant CP, Dice JF (1989) A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Nature (Lond) 246: 382–385

    CAS  Google Scholar 

  • Chirico WJ, Waters MG, Blobel G (1988) 70K heat shock related proteins stimulate protein translocation into microsomes. Nature (Lond) 332: 805–810

    Google Scholar 

  • Deshaies RJ, Koch BD, Wemer-Washburne M, Craig EA, Schekman R (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature (Lond) 332: 800–805

    Article  CAS  Google Scholar 

  • Devaux B, Albrecht G, Kedinger C (1987) Identical genomic footprints of the adenovirus EIIa promoter are detected before and after E1A induction. Mol Cell Biol 7: 4569–4563

    Google Scholar 

  • DiDomenico BJ, Bugaisky GE, Lindquist S (1982) The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell 31: 593–603

    Article  PubMed  CAS  Google Scholar 

  • Dorner AJ, Bole DG, Kaufman RJ (1987) The relationship of N-linked glycosylation and heavy chainbinding protein association with the secretion of glycoproteins. J Cell Biol 105: 2665–2674

    Article  PubMed  CAS  Google Scholar 

  • Ferris DK, Bellan AH, Morimoto RI, Welch W, Farrar WL (1988) Mitogen and lymphokine stimulation of heat shock proteins in T lymphocytes. Proc Natl Acad Sci USA 85: 3850–3854

    Article  PubMed  CAS  Google Scholar 

  • Flint J, Shenk T (1989) Adenovirus E1A protein:paradigm viral transactivator. Annu Rev Genet 23: 141–161

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos C, Ang D (1990) Properties of the Escherichia coli heat shock proteins and their role in bacteriophage lambda growth. In:Morimoto RI, Tissieres A, Georgopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 191

    Google Scholar 

  • Goldenberg CJ, Luo Y, Fenna M, Baler R, Weinmann R, Voellmy R (1988) Purified human factor activates heat-shock promoter in a HeLa cell-free transcription system. J Biol Chem 263: 19734–19739

    PubMed  CAS  Google Scholar 

  • Gross CA, Straus DB, Erickson JW (1990) The function and regulation of heat shock proteins in Escherichia coli. In:Morimoto RI, Tissieres A, Georogopoulos C (eds) Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, New York, pp 167

    Google Scholar 

  • Imperiale MJ, Kao HT, Feldman LT, Nevins JR, Strickland S (1984) Common control of the heat shock gene and early adenovirus genes:evidence for a cellular E1A-like activity. Mol Cell Biol 4: 867–874

    PubMed  CAS  Google Scholar 

  • Jakinot P, DeVaux B, Kedinger C (1987) The abundance and in vitro DNA binding of three cellular proteins interacting with the adenovirus EIIa early promoter are not modified by the Ela gene products. Mol Cell Biol 7: 3806–3817

    Google Scholar 

  • Kaczmarek L, Calabretta B, Kao HT, Heintz N, Nevins J, Baserga R (1987) Control of hsp70 RNA levels in human lymphocytes. J Cell Biol 104: 183–187

    Article  PubMed  CAS  Google Scholar 

  • Kang PJ, Ostermann J, Shilling J, Neupert W, Craig EA, Pfanner N (1990) Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature (Lond) 348: 137143

    Google Scholar 

  • Kao H, Nevins JR (1983) Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol Cell Biol 3: 2058–2065

    PubMed  CAS  Google Scholar 

  • Khandjian EW, Turler H (1983) Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol Cell Biol 3: 1–8

    PubMed  CAS  Google Scholar 

  • Kingston RE, Schuetz TJ, Larin Z (1987) Heat inducible human factor that binds to a human hsp70 promoter. Mol Cell Biol 7: 1530–1534

    PubMed  CAS  Google Scholar 

  • Kornuc M, Kliewer S, Garcia J, Narrich D, Li C, Gaynor R (1990) Adenovirus early region 3 promoter regulation by E1A-E1B is independent of alterations in DNA binding and gene activation of CREBATF and API. J Virol 64: 2004–2013

    PubMed  CAS  Google Scholar 

  • Kothary R, Perry MD, Moran LA, Rossant J (1987) Cell-lineage-specific expression of the mouse hsp68 gene during embryogenesis. Dev Biol 121: 342–348

    Article  PubMed  CAS  Google Scholar 

  • Kozutsumi Y, Segal M, Normington K, Gething M-J, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose regulated proteins. Nature (Lond) 332: 462–464

    Article  CAS  Google Scholar 

  • Krawczyk Z, Wisniewski J, Biesiada E (1987a) An hsp70-related gene is constitutively highly expressed in testis of rat and mouse. Mol Biol Rep 12: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk Z, Szymik N, Wisniewski J (1987b) Expression of hsp70-related gene in developing and degenerating rat testis. Mol Biol Rep 12: 35–41

    Article  PubMed  CAS  Google Scholar 

  • Kroes RA, Abravaya K, Seidenfeld J, Morimoto RI (1991) Selective activation of human heat shock gene transcription by nitrosourea antitumor drugs mediated by isocyanate-induced damage and activation of heat shock transcription factor. Proc Natl Acad Sci USA 88: 4825–4829

    Article  PubMed  CAS  Google Scholar 

  • Kwong AD, Frenkel N (1987) Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proc Natl Acad Sci USA 84: 1926–1930

    Article  PubMed  CAS  Google Scholar 

  • Larson JS, Schuetz TJ, Kingston RE (1988) Activation in vitro of sequence specific DNA binding by a human regulatory factor. Nature (Lond) 335: 372–375

    Article  CAS  Google Scholar 

  • Milarski K, Morimoto RI (1986) Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci USA 83: 9517–9521

    Article  PubMed  CAS  Google Scholar 

  • Mosser DD, Theodorakis NG, Morimoto RI (1988) Coordinate changes in heat shock element binding activity and hsp70 gene transcription rates in human cells. Mol Cell Biol 8: 4736–4744

    PubMed  CAS  Google Scholar 

  • Mosser DD, Kotzbauer PT, Sarge KD, Morimoto RI (1990) !n vitro activation of heat shock transcription factor DNA-binding by calcium and biochemical conditions that affect protein conformation. Proc Natl Acad Sci USA 87: 3748–3752

    Google Scholar 

  • Murthy SCS, Bhat GP, Thimmappaya B (1985) Adenovirus EIIa early promoter:transcriptional control elements and induction by the viral pre-early Ela gene, which appears to be sequence independent. Proc Natl Acad Sci USA 82: 2230–2234

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1982) Induction of the synthesis of a 70 000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell 29: 913–919

    Article  PubMed  CAS  Google Scholar 

  • Ng DTW, Randall RE, Lamb RA (1989) Intracellular maturation and transport of the SV5 type II glycoprotein hemagglutinin-neuraminidase:specific and transient association with grp78-bip in the endoplasmic reticulum and extensive internalization from the cell surface. J Cell Biol 109: 3273–3289

    Article  PubMed  CAS  Google Scholar 

  • Peluso RW, Lamb RA, Choppin PW (1978) Infection with paramyxoviruses stimulates synthesis of cellular polypeptides that are also stimulated in cells transformed by Rous sarcoma virus or deprived of glucose. Proc Natl Acad Sci USA 75: 6120–6124

    Article  PubMed  CAS  Google Scholar 

  • Phillips B, Abravaya K, Morimoto RI (1991) Analysis of the Specificity and Mechanism of the Transcriptional Activation of the Human HSP70 Gene During Infection by DNA Viruses. J Virology

    Google Scholar 

  • Rabindran SK, Giorgi G, Clos J, Wu C (1991) Molecular Cloning and Expression of a Human Heat Shock Factor, HSF1. Proc Natl Acad Sci USA 88: 6906–6910

    Article  PubMed  CAS  Google Scholar 

  • Richards FM, Watson A, Hickman JA (1988) Investigation on the effects of heat shock and agents which induce a heat shock response on the induction of differentiation of HL-60 cells. Cancer Res 48: 6715–6720

    PubMed  CAS  Google Scholar 

  • Santomenna LD, Colberg-Poley AM (1990) Induction of cellular hsp70 expression by human cytomegalovirus. J Virol 64: 2033–2040

    PubMed  CAS  Google Scholar 

  • Santoro MG, Garaci E, Amici C (1989) Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells. Proc Natl Acad Sci USA 86: 8407–8411

    Article  PubMed  CAS  Google Scholar 

  • Schaefer EL, Morimoto RI, Theodorakis NG, Seidenfeld J (1988) Induction of human stress response genes by chemicals that modify or damage DNA. Carcinogenesis 9: 1733–1738

    Article  PubMed  CAS  Google Scholar 

  • Schuetz TJ, Gallo GJ, Sheldon L, Tempst P, Kingston RE (1991) Evidence for Two Heat Shock Factor Genes in Humans. Proc Natl Acad Sci USA 88: 6911–6915

    Article  PubMed  CAS  Google Scholar 

  • Simon MC, Fisch TM, Benecke BJ, Nevins JR, Heintz N (1988) Definition of multiple, functionally distinct TATA elements, one of which is a target in the hsp70 promoter for Ela regulation. Cell 52: 723–729

    Article  PubMed  CAS  Google Scholar 

  • Singh MK, Yu J (1984) Accumulation of a heat shock-like protein during differentiation of human erythroid cell line K562. Nature (Lond) 309: 631–633

    Article  CAS  Google Scholar 

  • Stone DE, Craig EA (1990) Self-regulation of 70-kilodalton heat shock proteins in Saccharomyces cerevisiae. Mol Cell Biol 10: 1623–1632

    Google Scholar 

  • Taylor ICA, Kingston RE (1990) El a transactivation of human hsp70 gene promoter substitution mutants is independent of the composition of upstream and TATA elements. Mol Cell Biol 10: 176–183

    PubMed  CAS  Google Scholar 

  • Theodorakis NG, Morimoto RI (1987) Posttranscriptional regulation of hsp70 expression in human cells:effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol 7: 4357–4368

    PubMed  CAS  Google Scholar 

  • Theodorakis NG, Zand DJ, Kotzbauer PT, Williams GT, Morimoto RI (1989) Hemin induced transcriptional activation of the HSP70 gene during erythroid maturation in K562 cells is due to a heat shock factor mediated stress response. Mol Cell Biol 9: 3166–3173

    PubMed  CAS  Google Scholar 

  • Tilly K, McKittrick N, Zylicz M, Georgopoulos C (1983) The DnaK protein modulates the heat shock response of Escherichia coli. Cell 34: 641–646

    Article  PubMed  CAS  Google Scholar 

  • Ungewickell E (1985) The 70-kd mammalian heat shock proteins are structurally and functionally related to the uncoating protein that release clathrin triskelia from coated vesicles. EMBO J 4: 3385–3391

    PubMed  CAS  Google Scholar 

  • Watowich SS, Morimoto RI (1988) Complex regulation of heat shock and glucose responsive genes in human cells. Mol Cell Biol 8: 393–405

    PubMed  CAS  Google Scholar 

  • Watowich S, Morimoto RI, Lamb RA (1991) Flux of the Paramyxovirus Hemagglutinin-Neuraminidase Glycoprotein Through the Endoplasmic Reticulum Activates Transcription of the GRP78/BiP Gene. J Virology 65: 3590–3597

    PubMed  CAS  Google Scholar 

  • Williams GT, McClanahan TK, Morimoto RI (1989) E1A-transactivation of the human HSP70 promoter is mediated through the basal transcription complex. Mol Cell Biol 9: 2574–2587

    PubMed  CAS  Google Scholar 

  • Williams GT, Morimoto RI (1990) Maximal stress-induced transcription from the human hsp70 promoter requires interactions with the basal promoter elements independent of rotational alignment. Mol Cell Biol 10: 3125–3136

    PubMed  CAS  Google Scholar 

  • Wu BJ, Morimoto RI (1985) Transcription of the human hsp70 gene is induced by serum stimulation. Proc Natl Acad Sci USA 82: 6070–6074

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ, Hunt C, Morimoto R (1985) Structure and expression of the human gene encoding major heat shock protein hsp70. Mol Cell Biol 5: 330–341

    PubMed  CAS  Google Scholar 

  • Wu BJ, Hurst HC, Jones NC, Morimoto RI (1986a) The E1A 13S product of adenovirus 5 activates transcription of the cellular human HSP70 gene. Mol Cell Biol 6: 2994–2999

    PubMed  CAS  Google Scholar 

  • Wu BJ, Kingston RE, Morimoto RI (1986b) Human hsp70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci USA 83: 629–633

    Article  PubMed  CAS  Google Scholar 

  • Xiao H, Lis JT (1988) Germline transformation used to define key features of heat-shock response elements. Science 239: 1139–1142

    Article  PubMed  CAS  Google Scholar 

  • Zakeri Z, Wolgemuth DJ (1987) Developmental-stage-specific expression of the HSP70 gene family during differentation of the mammalian male germ line. Mol Cell Biol 7: 1791–1796

    PubMed  CAS  Google Scholar 

  • Zakeri ZF, Wolgemuth DJ, Hunt CR (1988) Identification and sequence analysis of a new member of the mouse hsp70 gene family and characterization of its unique cellular and developmental pattern of expression in the male germ line. Mol Cell Biol 8: 2925–2932

    PubMed  CAS  Google Scholar 

  • Zimarino V, Tsai C, Wu C (1990) Complex modes of heat shock factor activation. Mol Cell Biol 10: 752–759

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Phillips, B., Morimoto, R.I. (1991). Transcriptional Regulation of Human Hsp70 Genes: Relationship Between Cell Growth, Differentiation, Virus Infection, and the Stress Response. In: Hightower, L., Nover, L. (eds) Heat Shock and Development. Results and Problems in Cell Differentiation, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46712-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46712-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21993-5

  • Online ISBN: 978-3-540-46712-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics