Thermal Effects

  • Reinhard Iffländer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 77)


During optical pumping the laser material is heated [4.1] and must be cooled. The temperature gradient in the laser material initially induces a degradation of the beam quality and fmally a fracture of the crystal. The heating therefore determines the beam quality and the maximal laser output power. The exact knowledge of the various heating mechanisms is therefore important and will be discussed in some detail.


Pump Power Laser Medium Laser Material Pulse Operation Lens Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 4.1
    Krupke W.F.: Specific Heat Loading in Nd-Glas Lasers, LLNL-Report UCID-20531 DE36 002151 (1985)CrossRefGoogle Scholar
  2. 4.2
    Driedger K.P., et al.: Average Refractive Powers of an Alexandrit Laser Rod, Opt. Commun. 57 (1986) 403–406ADSCrossRefGoogle Scholar
  3. 4.3
    Mangir M.S., Rockwell D.A.: Measurements of Heating and Energy Storage in Flashlamp-Pumped Nd:YAG and Nd-Doped Phosphate Laser Glasses, IEEE J. Quantum Electron. 22 (1986) 574–580ADSCrossRefGoogle Scholar
  4. 4.4
    Blink J.A., et al.: Thermal Power Distribution in a Zig-Zag Slab Laser, LLNL. High-average-Power lasers 7. Laser program annual report (1986) 7–88 to 7–95Google Scholar
  5. 4.5
    Mann K., Weber H.: Surface Heat Transfer Coefficient, Heat Efficiency, and Temperature of Pulsed Solid-State Lasers, J. Appl. Phys. 64 (1988) 1015–1021ADSCrossRefGoogle Scholar
  6. 4.6
    Sumida D., Rockwell D.: Dependence of Cr Nd:GSGG Pumping Efficiency on Cr Concentration, HUGHES Research Lab., Malibu, CA (1986)Google Scholar
  7. 4.7
    Sun Y-C., Weber H.: Bestimmung der Spannungsdoppelbrechung optisch gepumpter Laserstäbe und ihr Einfluß auf die Brechkraft, Intemmer Bericht Univ. Kaiserslautem (1981)Google Scholar
  8. 4.8
    Koechner W.: Solid-State Laser Engineering (Springer, Berlin, Heidelberg 1976)Google Scholar
  9. 4.9
    Tautz H.: Warmeleitung und Temperaturausgleich (Chemie-Verlag, Weinheim 1971)Google Scholar
  10. 4.10
    Hagen W.F.: Thermal Fracture of Laser Glasses and Crystals, LLL Internal Report LRD 87–170 / 6061T (1987)Google Scholar
  11. 4.11
    Hodgson N., Weber H.: Measurement of Extraction Efficiency and Excitation Efficiency of Lasers, J. Mod. Opt. 35 (1988) 807–813ADSCrossRefGoogle Scholar
  12. 4.12
    Brown D.C., Lee K.L.: Methods for Scaling High Average Power Laser Performance, Proc. SPIE 622 (1986) 30–41ADSCrossRefGoogle Scholar
  13. 4.13
    Marion J.E.: Strengthening of Solid-State Laser Materials, Conf. Dig. CLEO (1985) THRGoogle Scholar
  14. 4.13a
    Marion J.E.: Strengthening of Solid-State Laser Materials, Appl. Phys. Lett. 47 (1985) 694–696ADSCrossRefGoogle Scholar
  15. 4.14
    Walling J.C.: Tunable Alexandrite Lasers: Development and Performance, IEEE J. Quantum Electron. 21 (1985) 1568ADSCrossRefGoogle Scholar
  16. 4.15
    Foster J.D., Osterink L.M.: Thermal Effects in a ND:YAG Laser, J. Appl. Phys. 41 (1970) 3656–3663ADSCrossRefGoogle Scholar
  17. 4.16
    Struve B., Fuhrberg P., Luhs W., Litfin G.: Thermal Lensing and Laser Operation of Flashlamp-Pumped Cr:GSAG, Opt, Commun. 65 (1988) 291–296ADSCrossRefGoogle Scholar
  18. 4.17
    C Horowitz, et al.: Thermal Lensing Analysis of Alexandrite Laser Rods by Moire Deflectometry, App!. Opt. 23 (1984) 2229–2233CrossRefGoogle Scholar
  19. 4.18
    Jankiewicz Z. et al.: Analysis of the Thermal Focusing Effect in a CW Nd:YAG Laser, Optica Applicata XV (1985) 125–134Google Scholar
  20. 4.19
    Murray J.E.: Pulsed Gain and Thermal Lensing of Nd:LiF4, IEEE J. Quantum Electron. 19 (1983) 488–490ADSCrossRefGoogle Scholar
  21. 4.20
    Kim H.K., et al.: Thermal Problems of the Cr:Nd:GSGG Laser under SolarSimulator Pumping, Conf Dig. CLEO (1988) TUM35Google Scholar
  22. 4.21
    Reed E.: A Flashlamp-Pumped, Q-switched Cr:Nd:GSGG Laser, IEEE J. Quantum Electron. 21 (1985) 1625–1629ADSCrossRefGoogle Scholar
  23. 4.22
    Kelly J.H., et al.: High Repetition Rate Cr:Nd:GSGG Active Mirror Amplifier, Opt. Lett. 12 (1987) 996–998ADSCrossRefGoogle Scholar
  24. 4.23
    Martin W.S.: Multiple Internal Reflection Face-Pumped Laser, US Patent 3,633,126 (1972)Google Scholar
  25. 4.24
    Hughes J.L.: High Power Continuous Wave Multi-Slab Laser Oscillator, Int. Patent WO 87/05160 (1987)Google Scholar
  26. 4.25
    Hoffmann H.J.: Verbundmaterialien füür die Lasertechnik und Optik, Offenlegungsschrift DE 36 17 362 Al (1987)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Reinhard Iffländer
    • 1
  1. 1.SchrambergGermany

Personalised recommendations