Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 77))

  • 463 Accesses

Abstract

During optical pumping the laser material is heated [4.1] and must be cooled. The temperature gradient in the laser material initially induces a degradation of the beam quality and fmally a fracture of the crystal. The heating therefore determines the beam quality and the maximal laser output power. The exact knowledge of the various heating mechanisms is therefore important and will be discussed in some detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Krupke W.F.: Specific Heat Loading in Nd-Glas Lasers, LLNL-Report UCID-20531 DE36 002151 (1985)

    Book  Google Scholar 

  2. Driedger K.P., et al.: Average Refractive Powers of an Alexandrit Laser Rod, Opt. Commun. 57 (1986) 403–406

    Article  ADS  Google Scholar 

  3. Mangir M.S., Rockwell D.A.: Measurements of Heating and Energy Storage in Flashlamp-Pumped Nd:YAG and Nd-Doped Phosphate Laser Glasses, IEEE J. Quantum Electron. 22 (1986) 574–580

    Article  ADS  Google Scholar 

  4. Blink J.A., et al.: Thermal Power Distribution in a Zig-Zag Slab Laser, LLNL. High-average-Power lasers 7. Laser program annual report (1986) 7–88 to 7–95

    Google Scholar 

  5. Mann K., Weber H.: Surface Heat Transfer Coefficient, Heat Efficiency, and Temperature of Pulsed Solid-State Lasers, J. Appl. Phys. 64 (1988) 1015–1021

    Article  ADS  Google Scholar 

  6. Sumida D., Rockwell D.: Dependence of Cr Nd:GSGG Pumping Efficiency on Cr Concentration, HUGHES Research Lab., Malibu, CA (1986)

    Google Scholar 

  7. Sun Y-C., Weber H.: Bestimmung der Spannungsdoppelbrechung optisch gepumpter Laserstäbe und ihr Einfluß auf die Brechkraft, Intemmer Bericht Univ. Kaiserslautem (1981)

    Google Scholar 

  8. Koechner W.: Solid-State Laser Engineering (Springer, Berlin, Heidelberg 1976)

    Google Scholar 

  9. Tautz H.: Warmeleitung und Temperaturausgleich (Chemie-Verlag, Weinheim 1971)

    Google Scholar 

  10. Hagen W.F.: Thermal Fracture of Laser Glasses and Crystals, LLL Internal Report LRD 87–170 / 6061T (1987)

    Google Scholar 

  11. Hodgson N., Weber H.: Measurement of Extraction Efficiency and Excitation Efficiency of Lasers, J. Mod. Opt. 35 (1988) 807–813

    Article  ADS  Google Scholar 

  12. Brown D.C., Lee K.L.: Methods for Scaling High Average Power Laser Performance, Proc. SPIE 622 (1986) 30–41

    Article  ADS  Google Scholar 

  13. Marion J.E.: Strengthening of Solid-State Laser Materials, Conf. Dig. CLEO (1985) THR

    Google Scholar 

  14. Marion J.E.: Strengthening of Solid-State Laser Materials, Appl. Phys. Lett. 47 (1985) 694–696

    Article  ADS  Google Scholar 

  15. Walling J.C.: Tunable Alexandrite Lasers: Development and Performance, IEEE J. Quantum Electron. 21 (1985) 1568

    Article  ADS  Google Scholar 

  16. Foster J.D., Osterink L.M.: Thermal Effects in a ND:YAG Laser, J. Appl. Phys. 41 (1970) 3656–3663

    Article  ADS  Google Scholar 

  17. Struve B., Fuhrberg P., Luhs W., Litfin G.: Thermal Lensing and Laser Operation of Flashlamp-Pumped Cr:GSAG, Opt, Commun. 65 (1988) 291–296

    Article  ADS  Google Scholar 

  18. C Horowitz, et al.: Thermal Lensing Analysis of Alexandrite Laser Rods by Moire Deflectometry, App!. Opt. 23 (1984) 2229–2233

    Article  Google Scholar 

  19. Jankiewicz Z. et al.: Analysis of the Thermal Focusing Effect in a CW Nd:YAG Laser, Optica Applicata XV (1985) 125–134

    Google Scholar 

  20. Murray J.E.: Pulsed Gain and Thermal Lensing of Nd:LiF4, IEEE J. Quantum Electron. 19 (1983) 488–490

    Article  ADS  Google Scholar 

  21. Kim H.K., et al.: Thermal Problems of the Cr:Nd:GSGG Laser under SolarSimulator Pumping, Conf Dig. CLEO (1988) TUM35

    Google Scholar 

  22. Reed E.: A Flashlamp-Pumped, Q-switched Cr:Nd:GSGG Laser, IEEE J. Quantum Electron. 21 (1985) 1625–1629

    Article  ADS  Google Scholar 

  23. Kelly J.H., et al.: High Repetition Rate Cr:Nd:GSGG Active Mirror Amplifier, Opt. Lett. 12 (1987) 996–998

    Article  ADS  Google Scholar 

  24. Martin W.S.: Multiple Internal Reflection Face-Pumped Laser, US Patent 3,633,126 (1972)

    Google Scholar 

  25. Hughes J.L.: High Power Continuous Wave Multi-Slab Laser Oscillator, Int. Patent WO 87/05160 (1987)

    Google Scholar 

  26. Hoffmann H.J.: Verbundmaterialien füür die Lasertechnik und Optik, Offenlegungsschrift DE 36 17 362 Al (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iffländer, R. (2001). Thermal Effects. In: Solid-State Lasers for Materials Processing. Springer Series in Optical Sciences, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46585-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46585-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08630-4

  • Online ISBN: 978-3-540-46585-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics