• Reinhard Iffländer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 77)


The beam parameters of a laser system for material processing are supposed to remain constant at the workpiece surface under all operating conditions. In particular this means: a constant focus diameter and focal depth, constant focus position and constant laser energy and laser power. For economic reasons the efficiency and the beam quality should be high, which guarantees a wide field of applications. Asymmetry in the processing direction must be avoided, the beam cross section, except in special cases, should be circular and the beam polarization circular or random.


Pump Power Beam Quality Output Coupler Reference Plane Beam Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 3.1
    Lörtscher J.P., Steffen J., Herziger G.: Dynamic Stable Resonators: A design procedure, Opt. Quantum Electron. 7 (1975) 505–514CrossRefGoogle Scholar
  2. 3.2
    Baues P.: Huygens’ Principle in Inhomogeneous Isotropic Media and a General Integral Equation Applicable to Optical Resonators, Opto-Electron. 1 (1969) 37– 44CrossRefGoogle Scholar
  3. 3.3
    Magni V.: Multielement Stable Resonators Containing a Variable Lens, J. Opt. Soc. Am. A 4 (1987) 1962–1969ADSCrossRefGoogle Scholar
  4. 3.4
    Grau G.K.: Laserspiegel zur Auskopplung eines speziellen beugungsbegrenzten Parallelstrahls, AEÜ 20 (1966) 704–705Google Scholar
  5. 3.5
    Iffländer R., Kortz H.P., Weber H.: Beam Divergence and Refractive Power of Directly Coated Solid-State Lasers, Opt. Commun. 29 (1979) 223–226ADSCrossRefGoogle Scholar
  6. 3.6
    Kortz H.P., Iffländer R., Weber H.: Stability and Beam Divergence of Multimode Lasers with Internal Variable Lenses, Appl. Opt. 20 (1981) 4124–4134ADSCrossRefGoogle Scholar
  7. 3.7
    Le Floch A., Lenormand J.M., Le Naour R., Taché J.P.: A Critical Geometry for Lasers with Internal Lenslike Effects, J. Phys. Lett. 43 (1982) L493—L498CrossRefGoogle Scholar
  8. 3.8
    Metcalf D. De Giovanni P., Zachorowski J., Leduc M.: Laser Resonators Containing Self-Focusing Elements, Appl. Opt. 26 (1987) 4508–4517ADSCrossRefGoogle Scholar
  9. 3.9
    Driedger K.P., Ifflander R.M., Weber H.: Multirod Resonators for High-Power Solid-State Lasers with Improved Beam Quality, IEEE J. Quantum Electron. 24 (1988) 665–674ADSCrossRefGoogle Scholar
  10. 3.10
    Weber H., Iffländer R., Seiler P.: High Power Nd-Lasers for Industrial Application, Proc. SPIE 650 (1986) 92–100ADSCrossRefGoogle Scholar
  11. 3.11
    Driedger K.P., Lu B., Weber H.: Multimode Resonators, Insensitive Against Thermal Lensing, Opt. Acta 32 (1985) 847–854ADSCrossRefGoogle Scholar
  12. 3.12
    Hauck R., Kortz H.P., Weber H.: Misalignment Sensitivity of Optical Resonators, Appl. Opt. 19 (1980) 598–601ADSCrossRefGoogle Scholar
  13. 3.13
    Siegman A.E.: A Canonical Formulation for Analyzing Multielement Unstable Resonators, IEEE J. Quantum Electron. 12 (1976) 35–39ADSCrossRefGoogle Scholar
  14. 3.14
    Anan’ev Y.A.: Unstable Resonators and their Applications (Review), Soy. J. Quantum. Electron. 1 (1972) 565–586CrossRefGoogle Scholar
  15. 3.15
    Hanna D.C., Laylock L.C.: An Unstable Resonator Nd-YAG Laser, Opt. Quantum. Electron. 11 (1979) 153–160ADSCrossRefGoogle Scholar
  16. 3.16
    Lissak B., Ruschin S.: Transverse Pattern Modifications in a Stable Apertured Laser Resonator, Appl. Opt. 29 (1990) 767–771ADSCrossRefGoogle Scholar
  17. 3.17
    Pipes A., Harvill L.R., Applied Mathematics for Engineers and Physicists (Mc Graw Hill, New York 1970)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Reinhard Iffländer
    • 1
  1. 1.SchrambergGermany

Personalised recommendations