Laser Materials

  • Reinhard Iffländer
Part of the Springer Series in Optical Sciences book series (SSOS, volume 77)

In the following, the specifications for the most important parameters are defmed and listed for various laser materials. Only those materials are taken into account, for which laser activity has been proven for pulse or cw-operation at room temperature with an efficiency of about 1% lamp or diode with excitation and which are commercially available. Further details are provided in the subsequent chapters.


Laser Level Laser Material Nonlinear Refractive Index Energy Level Diagram Effective Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 11.1
    Filer ED., et al.: Theoretical Branching Ratios for the 5I75I7 Levels of Ho3+ in the garnets A3B2C3012 (A=Y, La, Lu, Gd; B = Al, Lu, SC, Ga; C = Al, Ga), OSA Proc. Adv. Solid State Lasers 6 (1990) 354–362ADSGoogle Scholar
  2. 11.2
    Hoffman, H.J., Hayden J.S.: Glasses as Active Materials for High Average Power Solid-State Lasers, Proc. SPIE 1021 (1988) 42–50ADSGoogle Scholar
  3. 11.3
    Milam D., Weber M.J., Glass, A.J.: Nonlinear Refractive Index of Fluoride Crystals, Appl. Phys. Lett. 31 (1977) 822–825Google Scholar
  4. 11.4
    Penzkofer A.: Solid-State Lasers, Prog. Quantum Electron. 12 (1988) 366–369Google Scholar
  5. 11.5
    Brown D.C.: High-Peak-Power Nd:Glass Laser Systems (Springer, Berlin 1981)Google Scholar
  6. 11.6
    Boling N.L., et al.: Empirical Relationships for Predicting Nonlinear Refractive Index Changes in Optical Solids, IEEE J. Quantum Electron. 14 (1978) 601–608ADSCrossRefGoogle Scholar
  7. 11.7
    Lai ST.: Highly Efficient Emerald Laser, J. Opt. Soc. AM. B 4 (1987) 1286–1290ADSCrossRefGoogle Scholar
  8. 11.7a
    Lai ST.: Review of Spectroscopic and Laser Properties of Emerald, Proc. SPIE 622 (1986) 146–150Google Scholar
  9. 11.8
    Petermann K., Huber G.: Broad Band Fluorescence of Transition Metal Doped Garnets and Tungstates, J. Lumin. 31&23 (1984) 71–77CrossRefGoogle Scholar
  10. 11.9
    Chase L.L., et al.: Emission Cross Sections of the Mid-Infrared Laser Transitions of Ho3+, Er3+ and Tm3+ in Fluoride and Oxid Crystals, Adv. Solid State Lasers Tech. Dig. (1991) 118–120Google Scholar
  11. 11.10
    Chase L.L., et al.: Emission Cross Sections and Energy Extraction for the Midinfrared Transitions of Er, Tm and Ho in Oxide and Fluoride Crystals, OSA Proc. Adv. Solid State Lasers 10 (1991) 161–165ADSGoogle Scholar
  12. 11.11
    Knights M.G., et al.: High-Efficiency Deep-Red Laser Pumped by Doubled Nd:YAG, IEEE J. Quantum Electron. 18 (1982) 163–166ADSCrossRefGoogle Scholar
  13. 11.12
    Kaminskii A.A.: Laser Crystals (Springer, Berlin 1990) 327Google Scholar
  14. 11.13
    Kaminskii A.A., et al.: LiYF4:Pr3÷ Laser at 639,5 nm with 30 J Flashlamp Pumping and 87 mJ Output Energy, Phys. Stat. Sol. 138 (1993) K45–K48ADSCrossRefGoogle Scholar
  15. 11.13a
    Eichler H.J, Liu B.: Gepulster LiYF4: Pr3+-Laser, TU-Berlin (1993)Google Scholar
  16. 11.14
    Armagan G., et al.: Spectroscopic Characterization of Dynamical Process for Tm, HO:YAG Lasers, OSA Proc. Adv. Solid State Lasers 6 (1990) 144–149ADSGoogle Scholar
  17. 11.15
    Lacavora P., et al.: Room-Temperature Diode-Pumped Yb:YAG Laser, Opt. Lett. 16 (1991) 1089–1091ADSCrossRefGoogle Scholar
  18. 11.16
    Lacavora P., et al.: Room-Temperature InGaAS Diode-Pumped Yb:YAG laser, Adv. Solid State Lasers Conf. Dig. (1991) 220–222Google Scholar
  19. 11.17
    Payne S.A., et al.: Laser Properties of Yb-Doped Fluorapatite, Adv. Solid State Lasers Conf. Dig. (1992) Pd8–1–Pd8–4Google Scholar
  20. 11.18
    Kaminskii A.A.: Achievements of Moderm Crystal-Laser Physics, Ann Phys. 16 (1991) 639–706CrossRefGoogle Scholar
  21. 11.18a
    Kaminskii A.A., et al.: New Data on Stimulated Emission of Crystals Containing Er3+ and Ho3+ Ions, Sov. Tech. Phys. Lett. 2 (1976) 308–310Google Scholar
  22. 11.19
    Koechner W.: Solid-State Laser Engineering (Springer, Berlin 1992)Google Scholar
  23. 11.20
    Walling J.C., et al.: Tunable Alexandrite Lasers, IEEE. J. Quantum Electron. 16 (1980) 1302–1315ADSCrossRefGoogle Scholar
  24. 11.21
    Stange H., et al.: Continuous Wave 1.6 μm Laser Action in Er Doped Garnets at Room Temperature, Appl. Phys. B 49 (1989) 269–273ADSCrossRefGoogle Scholar
  25. 11.22
    Thogersen J., Bjerre N.: Multiphoton Absorption and Cooperative Upconversion Excitation in Er -Doped Fibers, Opt. Lett. 18 (1993) 197–199ADSCrossRefGoogle Scholar
  26. 11.23
    Arahira S., et al.: Successive Excited-State Absorption Through a Multistep Process in Highly Er -Doped Fiber Pumped by a 1.48-μm Laser Diode, Opt. Lett 17 (1992) 1679–1681ADSCrossRefGoogle Scholar
  27. 11.24
    Kurtz R., Fathe L., Birnbaum M.: New Laser Lines of Erbium in Yttrium Aluminium Garnet, OSA Proc. Adv. Solid State Lasers 6 (1990) 247–250ADSGoogle Scholar
  28. 11.25
    Handbook of Laser Science and Technology I (CRC Press, Boca Raton Florida 1982) 26–35Google Scholar
  29. 11.26
    Hollinger FLI-Berlin (1993) Personal communicationGoogle Scholar
  30. 11.27
    Hodgson N., Golding D.J.: High Power 1.444 μm Nd:YAG Laser and its Medical Applications, Laser Optoelectronik 25 (1993) 38–47Google Scholar
  31. 11.28
    Wong, S.K., Mathieu P., Pace P.: Eye-Safe Nd:YAG Laser, Appl. Phys. Lett 57 (1990) 650–652ADSCrossRefGoogle Scholar
  32. 11.29
    Ohishi Y, et al.: Pr3+-Doped Fluoride Fiber Amplifier Operating at 1.31 μm, Opt. Lett 16 (1991) 1747–1749ADSCrossRefGoogle Scholar
  33. 11.30
    Neto JAM., et al.: Radiative and Nonradiative Properties of Prasodymium-Doped Glasses, Conf. Dig. CLEO (1993) 498Google Scholar
  34. 11.31
    Petermann K., Universität Hamburg, Personal communication (1994)Google Scholar
  35. 11.32
    Seelert W., Strauss, E.: Absolute Excited-State Absorption Cross Section and Fluorescence Quantum Efficiency of Cr+:Gadolinium Scandium Gallium Garnet, Opt. Lett. 12 (1987) 798–199ADSCrossRefGoogle Scholar
  36. 11.33
    Petricevic A.S., Alfano R.R., Seas A.: Slope Efficiency Measurements of a Chromium-Doped Forsterite Laser, Opt. Lett. 16 (1991) 811–813ADSCrossRefGoogle Scholar
  37. 11.34
    Barnes NP., et al.: Operation of an Er:YLF Laser at 1.73 μm, IEEE J. Quantum Electron. 22 (1986) 337–343ADSCrossRefGoogle Scholar
  38. 11.35
    Union Carbide. CZ Ruby Laser Rods, Data sheet (1986)Google Scholar
  39. 11.36
    Walling J.C., et al.: Tunable Alexandrite Lasers, IEEE J. Quantum Electron. 16 (1980) 1302–1315ADSCrossRefGoogle Scholar
  40. 11.37
    Miniscalco W.J., Quimby R.S.: General Procedure for the Analysis of Er- Cross Sections, Opt. Lett. 16 (1991) 258–260ADSCrossRefGoogle Scholar
  41. 11.38
    Datwyler M., Lüüthy W., Weber H.P.: New Wavelengths of the YALO3:Er Laser, IEEE J. Quantum Electron. 23 (1987) 158–159ADSCrossRefGoogle Scholar
  42. 11.39
    Imai S., et al.: High Power Alexandrite Laser and its Applications, Conf. Dig. CLEO (1986) 106Google Scholar
  43. 11.40
    Rapoport W.R., Samelson H.: Alexandrite Slab Laser, LASER 85 Las VegasGoogle Scholar
  44. 11.41
    Bowman S.R., et al.: Upconversion Studies of Flashlamp-Pumped Cr, Tm, Ho: YAG, OSA Proc. Adv. Solid State Lasers 10 (1991) 172–177ADSGoogle Scholar
  45. 11.42
    Imai S., et al.: A 20 W Cr3+, Tm3+, Ho3+:YAG Laser, Opt. Laser Technol. 22 (1990) 351–353ADSCrossRefGoogle Scholar
  46. 11.43
    Knights M.G., et al.: High power TEM00 2-μm Laser, Conf. Dig. CLEO (1985) 94Google Scholar
  47. 11.44
    Teichmann H., Duczynski E.W., Huber G.: Efficient Flashlamp Pumped Operation of a Cr, Tm, Ho: YAG Laser at 2.08 μm, Conf. Dig. CLEO (1988)Google Scholar
  48. 11.44a
    Teichmann H., Duczynski E.W., Huber G.: 17 J Ho-Laser at 2 Microns, Proc. SPIE 1021 (1988) 74–81ADSGoogle Scholar
  49. 11.45
    Meier J.V., et al.: Flashlamp-Pumped Cr3+: GSAG Laser, IEEE J. Quantum Electron. 22 (1986) 2058–2064ADSCrossRefGoogle Scholar
  50. 11.46
    Maeda K., et al.: Concentration Dependence of Fluorescence Lifetime of Nd3+-Doped Gd3Ga5O12 Lasers, Jpn. J. Appl. Phys. 23 (1984) L759—L760Google Scholar
  51. 11.47
    Krupke W.F.: Spectroscopic, Optical and Thermo-Mechanical Properties of GSGG and its Laser Performance, UCRL 93853 Preprint (1985)Google Scholar
  52. 11.48
    Hayakawa H., et al.: High Average Power Nd:Gd3Ga5O12 Slab Laser, Jpn. J. Appl. Phys. 26 (1987) L1623—L1625Google Scholar
  53. 11.49
    Jenssen H.P., et al.: Spectroscopic Properties and Laser Performance of Nd3+ in Lanthanum Beryllate, J. Appl. Phys. 47 (1976) 1496–1500ADSCrossRefGoogle Scholar
  54. 11.50
    Tucker A.W., et al.: Stimulated-Emission Cross Section at 1064 and 1342 nm in Nd:YVO4, J. Appl. Phys. 48 (1977) 4907–4911ADSCrossRefGoogle Scholar
  55. 11.51
    DeShazer L.G., et al.: Laser Performance of Nd3+ and Ho3+ in YVO4 and Nd3+ in Gadolinium Gallium Garnet (GGG), Dig. Tech. Pap. 8th Int. Quantum Electron. Conf. (1974) 683Google Scholar
  56. 11.52
    Pollak TM., et al.: CW Laser Operation of Nd:YLF, IEEE J. Quantum Electron. 18 (1982) 159–162ADSCrossRefGoogle Scholar
  57. 11.53
    Thomas M.D., Chicklis E.P.: High power 1.3 μm Nd:YAG Laser, Conf. Dig. CLEO (1986) 214Google Scholar
  58. 11.54
    Fuhrmann K., et al.: Effective Cross Section of the Nd:YAG 1.0641-μm Laser Transition, J. App. Phys. 62 (1987) 4041–4044ADSCrossRefGoogle Scholar
  59. 11.55
    Shen H., et al.: High Power 1.314 μm Nd:YAG Laser, Opt. Laser Technology (Aug 1986) 193–197Google Scholar
  60. 11.56
    Frauchiger J., Lüthy W.: Power Limits of a YAG:Er Laser, Opt. Laser Technology 19 (1987) 312–315ADSCrossRefGoogle Scholar
  61. 11.57
    Mochizuki T., et al.: Development of High Power Solid-State Lasers at Hoya Corp.Google Scholar
  62. 11.58
    Bass M., et al.: Room Temperature of the 50% Doped Er:YAG Laser at 2940 nm Conf. Dig. CLEO (1986) 3–7Google Scholar
  63. 11.59
    Quarles G.J., et al.: High Efficiency 2.09 μm Flashlamp-Pumped Laser, App. Phys. Lett. 55 (1989) 1062–1064ADSCrossRefGoogle Scholar
  64. 11.59a
    Quarles G.J., et al.: Flash pumped, Room-temperature 2 μm Laser with 5% Slope Efficiency, Proc. SPIE1223 (1990) 221–229ADSCrossRefGoogle Scholar
  65. 11.60
    Fan T.Y., et al.: Spectroscopy and Diode Laser-Pumped Operation of Tm, Ho:YAG, IEEE J. Quantum Electron. 24 (1988) 924–933ADSCrossRefGoogle Scholar
  66. 11.60a
    Fan T.Y., Huber G., Byer R.L.: Continuous-Wave Operation at 2.1 μm of a Diode -Laser-Pumped, Tm Sensitized Ho:Y3A15012 Laser at 300 K, Opt. Lett. 123 (1987) 678–680ADSCrossRefGoogle Scholar
  67. 11.61
    Rotman S.R.: Nonradiative Energy Transfer in Nd:YAG — Evidence for the Correlated Placement of Ions, App. Phys. Lett. 54 (1989) 2053–2055ADSCrossRefGoogle Scholar
  68. 11.62
    Jain R.K., et al.: Diode-Pumped 1.3 μm Nd:YVO4 Laser, Conf. Dig. CLEO (1988) THB5Google Scholar
  69. 11.63
    Shen H., et al.: New Advances in Nd:YAP-Lasers, Fujian Institute on the Structure of Matter. Fuzhou, Fujian ChinaGoogle Scholar
  70. 11.64
    Massey G.A.: Measurement of Device Parameters for Nd:YA1O3 Lasers, IEEE J. Quantum Electron. 8 (1972) 669–674ADSCrossRefGoogle Scholar
  71. 11.65
    Schäütz I, Freitag I., Wallenstein R.: Minature Self-Frequency-Doubling CW Nd:YAB Laser Pumped by a Diode-Laser, Opt. Commun. 77 (1990) 221–225ADSCrossRefGoogle Scholar
  72. 11.66
    Kaminskii., et al. New Stimulated Emission Data of Gd3Ga5O12:Nd, Phys. Status Solidi 49 (1978) 305–311Google Scholar
  73. 11.67
    Albrecht G.F., et al.: Measurements of Ti3+.:A12O3 as a Lasing Material, Opt. Commun. 52 (1985) 401–404ADSCrossRefGoogle Scholar
  74. 11.68
    Lacovara P., et al.: Flash-Lamp-Pumped Ti3 :A12O3 Laser Using Fluorescent Conversion, Opt. Lett. 10 (1985) 273–275ADSCrossRefGoogle Scholar
  75. 11.69
    Sanchez A., et al.: Room-Temperature Continuous-Wave Operation of a Ti:A12O3 Laser, Opt. Lett. 11 (1986) 363–364ADSCrossRefGoogle Scholar
  76. 11.70
    Carts Y.A.: Titanium Sapphire’s Star Rises, Laser Focus World 9 (1989) 73–88ADSGoogle Scholar
  77. 11.70a
    Flashlamp Pumps Ti:Sapphire Laser: Laser Focus World 8 (1989) 21Google Scholar
  78. 11.71
    Armagan G., et al.: Comparison of Spectroscopic Properties of Tm and Ho in YAG and YLF Crystals, OSA Proc. Adv. Solid State Lasers 10 (1991) 222–226Google Scholar
  79. 11.72
    Conf. Dig. CLEO CthF-4 CthF-5 (1993) 409Google Scholar
  80. 11.73
    Quarles G., Pinto J.F., Esterowitz L.: Broad Tunability of FlashPumped, TmActivated Garnet Lasers, OSA Proc. Adv. Solid State Lasers 10 (1991) 167–171ADSGoogle Scholar
  81. 11.73a
    Quarles G.J., Marquardt CL., Esterowitz L.: Efficient Room-Temperature Operation of a Flashlamp-Pumped Cr;Tm:YAG Laser at 2.014 μm, OSA Proc. 6 (1990) 150Google Scholar
  82. 11.74
    DeLoach L.D., et al.: Evaluation of Absorption and Emission Properties of Yb3+ Doped Crystals for Laser Applications, University of California, LLNL Livermore (1993)Google Scholar
  83. 11.75
    Giesen A., et al.: Scalable Concept for Diode-Pumped High-Power Solid-State Lasers, App. Phys. B (1994) acceptedGoogle Scholar
  84. 11.76
    Hovies FE., et al.: Low-Level Relaxation of Nd:YAG, OSA Proc. 9 (1990) 227–229Google Scholar
  85. 11.77
    Nakatsuka M., et al.: Nd:Quartz Laser Rod Produced by the Sol-Gel Method with no Additives, Conf. Dig. CLEO (1993) 590Google Scholar
  86. 11.78
    Cao JD., et al.: Five Watt Single Transverse Mode Neodymium-Doped Fiber Laser, Conf. Dig. CLEO (1993) 622Google Scholar
  87. 11.79
    Hoffstädt A.: High Average Power Flash-Lamp-Pumped Ti:Sapphire Laser, Opt. Lett (1994) to be publishedGoogle Scholar
  88. 11.80
    Marion J.E.: Fracture Mechanisms and Strengthening of Slab Lasers, Proc. SPIE 736 (1987) 2–12CrossRefGoogle Scholar
  89. 11.81
    Marion J.E., Pertica A.J.: Materials for High Average Power Lasers, Proc. SPIE 1040 (1989) 2–18ADSGoogle Scholar
  90. 11.82
    Esmeria J.M., et al.: Efficient Continous-Wave Lasing Operation of Nd:KGd(W04)2 at 1.067 μm with Diode and Ti:Sapphire Laser Pumping, Opt. Lett 20 (1995) 1538–1540ADSCrossRefGoogle Scholar
  91. 11.83
    Sumida D.S., Fan T.Y., Hutcheson R.: Spectroscopy and Diode-Pumped Lasing of Yb3+-Doped Lu3A15O12 (Yb:LuAG), OSA Proc. Adv. Solid State Lasers 24 (1995) 348–350Google Scholar
  92. 11.84
    Sumida D.S., Fan T.Y.: Radiation Trapping in Solid-State Laser Media and its Impact on Fluorescence Lifetime and Emission Cross Section Measurements, OSA Proc. Adv. Solid State Lasers 24 (1995) 542–544Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2001

Authors and Affiliations

  • Reinhard Iffländer
    • 1
  1. 1.SchrambergGermany

Personalised recommendations