Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 77))

  • 475 Accesses

Abstract

The most important solid-state laser material used for material processing is Nd:YAG; followed by Cr:ruby and Nd:glass. Possible new materials are Cr:alexandrite, Nd:GSGG, Nd:GGG, Nd:Cr:GGG and Yb:YAG. For medical applications, holmium and erbium are used at different wavelengths in various host crystals or glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koechner W.: Solid-State Laser Engineering (Springer, Berlin 1976)

    Google Scholar 

  2. Rigrod W.W.: Homogeneously Broadened CW Laser with Uniform Distributed Loss, IEEE J. Quantum Electron. 14 (1978) 377–381

    Article  ADS  Google Scholar 

  3. Schindler G.M.: Optimum Output Efficiency of Homogeneously Broadened Lasers with Constant Loss, IEEE J. Quantum Electron. 16 (1980) 546–549

    Article  ADS  Google Scholar 

  4. Findlay D., Clay R.A.: The Measurement of Internal Losses in 4-level Lasers, Phys. Lett. 20 (1966) 277–278

    Article  ADS  Google Scholar 

  5. Mann K., Phillipps G.: Absorption- und Streulichtmessung bei 1,06 μm an ungepumpten Nd:YAG- und Cr, Nd:GGG-Laserstäben (Festkorperlaser-Institut Berlin, Interner Bericht, 1989)

    Google Scholar 

  6. Kuratev I.I., et al.: Mechanism of Short-Lived Absorption in YAG:Nd Crystals, Sov. J. Quantum Electron. 15 (1985) 861–862

    Article  ADS  Google Scholar 

  7. Weber H.: Optimimierung von Nd-Lasern (Universität Kaiserslautern, Inst. fäir Physik, Interner Bericht Feb. 1987)

    Google Scholar 

  8. Hodgson N. Festkorperlaser-Institut Berlin. Personal communication 1988

    Google Scholar 

  9. Wildmann D., Junghans J., Jundt H.F.: Laserbeschriftung, Stand der Technik, Proc. Laser 87 Optoelectronic Munich (1987)

    Google Scholar 

  10. Baldwin G.D.: Output Power Calculations for a Continously Pumped Q-Switched YAG+3:Nd Laser, IEEE J. Quantum Electron. 7 (1971) 220–224

    Article  ADS  Google Scholar 

  11. Nonhof C.J., Keränen R.: Pulse to Pulse Instabilities in a Multimode Q-Switched ND:YAG-Laser, Proc. Laser 87 Optoelectronic Munich (1987) 332–338

    Google Scholar 

  12. Yariv A.: Energy and Power Considerations in Injection and Optically Pumped Lasers, Proc. IEEE Dec. (1963) 1723–1731

    Google Scholar 

  13. Hodgson N. Weber H.: Extraktionswirkungsgrade von Laseroszillatoren (Inst. für Physik, Universität Kaiserslautern April 1987)

    Google Scholar 

  14. Eicher J., Mann K., Weber H.: Untersuchung der Eigenschaften von FestkOrperslablasersystemen, Zwischenbericht zum BMFT-Projekt 13 N 5306/1

    Google Scholar 

  15. Caird J.A., et al.: Measurements of Losses and Lasing Efficiency in GSGG:Cr, Nd and YAG:Nd Laser Rods, Appl. Opt. 25 (1986) 4294–4305

    Article  ADS  Google Scholar 

  16. Sina B.K.: A New Method for the Estimation of Pumping Coefficient for a Ruby Laser, IEEE J. Quantum Electron. 15 (1979) 1083–1085

    Article  ADS  Google Scholar 

  17. Laporta P., Magni V., Svelto O.: Comparative Study of the Optical Pumping Efficiency in Solid-State Lasers, IEEE J. Quantum Electron. 21 (1985) 1211–1218

    Article  ADS  Google Scholar 

  18. Mindak M., Szydlak J.: Examples of Operating Characteristics and Power Balance in Pump Cavity of CW Nd:YAG Laser, Optica Applicata 13 (1983) 407–419

    Google Scholar 

  19. Kliewer M.L., Powell R.C.: Excited State Absorption of Pump Radiation as a Loss Mechanism in Solid-State Lasers, IEEE J. Quantum Electron. 25 (1989) 1850– 1854

    Article  ADS  Google Scholar 

  20. Jeys T.H.: Suppression of Laser Spiking by Intracavity Second Harmonic Generation, Appl. Opt. 30 (1991) 1011–1013

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Iffländer, R. (2001). Fundamentals of Solid-State Lasers. In: Solid-State Lasers for Materials Processing. Springer Series in Optical Sciences, vol 77. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46585-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46585-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08630-4

  • Online ISBN: 978-3-540-46585-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics