Skip to main content

Actin Structure Function Relationships Revealed by Yeast Molecular Genetics

  • Chapter
Molecular Interactions of Actin

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 32))

Abstract

The yeast Saccharomyces cerevisiae, has proven to be a powerful model organism in which to study actin function and structure-function relationships. This yeast has a single actin gene, a feature that greatly simplifies molecular-genetic and biochemical analysis of actin. Yeast actin is 88% identical to mammalian actin and its biochemical properties are similar to all other actins studied (Nefsky and Bretscher 1992). The ease of molecular genetics in yeast has allowed the generation of numerous site-specific actin mutants. Furthermore, the nonlethal actin mutants have been expressed in yeast as the sole source of actin (Shortle et al. 1984), allowing elucidation of biological importance via phenotypic analysis, and purification and biochemical characterization of mutant actins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams AE, Botstein D (1989) Dominant suppressors of yeast actin mutations that are reciprocally suppressed. Genetics 121: 675–683

    PubMed  CAS  Google Scholar 

  • Adams AE, Botstein D, Drubin DG (1989) A yeast actin-binding protein is encoded by SAC6, a gene found by suppression of an actin mutation. Science 243: 231–233

    Article  PubMed  CAS  Google Scholar 

  • Amberg DC, Basart E, Botstein D (1995) Defining protein interactions with yeast actin in vivo. Nat Struct Biol 2: 28–35

    Article  PubMed  CAS  Google Scholar 

  • Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG (1997) High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol 137: 399–416

    Article  PubMed  CAS  Google Scholar 

  • Bass SH, Mulkerrin MG, Wells JA (1991) A systematic mutational analysis of hormone-binding determinants in the human growth hormone receptor. Proc Natl Acad Sci USA 88: 4498–502

    Article  PubMed  CAS  Google Scholar 

  • Belmont LD, Drubin DG (1998) The Yeast V159N actin mutant reveals roles for actin dynamics in vivo. J Cell Biol 142: 1289–1299

    Article  PubMed  CAS  Google Scholar 

  • Belmont LD, Orlova A, Drubin DG, Egelman EH (1999a) A change in actin conformation associated with filament instability and Pi release. Proc Natl Acad Sci USA 96: 29–34

    Article  PubMed  CAS  Google Scholar 

  • Belmont LD, Patterson GML, Drubin DG (1999b) New actin mutants allow further characteriza- tion of the nucleotide binding cleft and drug binding sites. J Cell Sci 112 (9): 1325–1336

    PubMed  CAS  Google Scholar 

  • Bennett WF, Paoni NF, Keyt BA, Botstein D, Jones AJ, Presta L, Wurm FM, Zoller MJ (1991) High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem 266: 5191–5201

    PubMed  CAS  Google Scholar 

  • Buzan JM, Frieden C (1996) Yeast actin: polymerization kinetic studies of wild type and a poorly polymerizing mutant. Proc Natl Acad Sci USA 93: 91–95

    Article  PubMed  CAS  Google Scholar 

  • Cali BM, Doyle TC, Botstein D, Fink GR (1998) Multiple functions for actin during filamentous growth of Saccharomyces cerevisiae. Mol Biol Cell 9: 1873–1889

    PubMed  CAS  Google Scholar 

  • Chen X, Cook RK, Rubenstein PA (1993) Yeast actin with a mutation in the “hydrophobic plug” between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect. J Cell Biol 123: 1185–1195

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Peng J, Pedram M, Swenson CA, Rubenstein PA (1995) The effect of the S14A mutation on the conformation and thermostability of Saccharomyces cerevisiae G-actin and its interaction with adenine nucleotides. J Biol Chem 270: 11415–11423

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Rubenstein PA (1995) A mutation in an ATP-binding loop of Saccharomyces cerevisiae actin (S14A) causes a temperature-sensitive phenotype in vivo and in vitro. J Biol Chem 270: 11406–11414

    Article  PubMed  CAS  Google Scholar 

  • Chien CT, Bartel PL, Sternglanz R, Fields S (1991) The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci USA 88: 9578–9582

    Article  PubMed  CAS  Google Scholar 

  • Cook RK, Rubenstein PA (1989) The effects of actin asp10 mutants on yeast viability. J Cell Biol 109: 271a

    Google Scholar 

  • Cook RK, Blake WT, Rubenstein PA (1992) Removal of the amino-terminal acidic residues of yeast actin. Studies in vitro and in vivo [published erratum appears in J Biol Chem 267:13780]. J Biol Chem 267: 9430–9436

    CAS  Google Scholar 

  • Cook RK, Root D, Miller C, Reisler E, Rubenstein PA (1993) Enhanced stimulation of myosin subfragment 1 Atpase activity by addition of negatively charged residues to the yeast actin Nh2 terminus. J Biol Chem 268: 2410–2415

    PubMed  CAS  Google Scholar 

  • Crosbie RH, Miller C, Chalovich J, Rubenstein P, Reisler E (1994) Caldesmon, N-terminal yeast actin mutants, and the regulation of actomyosin interactions. Biochemistry 33: 3210–3216

    Google Scholar 

  • Drubin DG, Miller KG, Botstein D (1988) Yeast actin-binding proteins: Evidence for a role in morphogenesis. J Cell Biol 107: 2551–2561

    Google Scholar 

  • Drubin DG, Jones HD, Wertman KF (1993) Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidinbinding site. Mol Biol Cell 4: 1277–1294

    PubMed  CAS  Google Scholar 

  • Dunn TM, Shortle D (1990) Null alleles of SAC7 suppress temperature-sensitive actin mutations in Saccharomyces cerevisiae. Mol Cell Biol 10: 2308–2314

    PubMed  CAS  Google Scholar 

  • Feng L, Kim E, Lee WL, Miller CJ, Kuang B, Reisler E, Rubenstein PA (1997) Fluorescence probing of yeast actin subdomain 3/4 hydrophobic loop 262–274. Actin-actin and actin-myosin interactions in actin filaments. J Biol Chem 272: 16829–16837

    Google Scholar 

  • Gibbs CS, Zoller MJ (1991) Rational scanning mutagenesis of a protein kinase identifies functional regions involved in catalysis and substrate interactions. J Biol Chem 266: 8923–8931

    PubMed  CAS  Google Scholar 

  • Gimeno CJ, Ljungdahl P0, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: Regulation by starvation and RAS. Cell 68: 1077–1090

    Google Scholar 

  • Hanein D, Matsudaira P, DeRosier DJ (1997) Evidence for a conformational change in actin induced by fimbrin (N375) binding. J Cell Biol 139: 387–396

    Article  PubMed  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347: 44–49

    Article  PubMed  CAS  Google Scholar 

  • Holtzman DA, Wertman KF, Drubin DG (1994) Mapping actin surfaces required for functional interactions in vivo. J Cell Biol 126: 423–432

    Article  PubMed  CAS  Google Scholar 

  • Honts JE, Sandrock TS, Brower SM, O’Dell JL, Adams AE (1994) Actin mutations that show suppression with fimbrin mutations identify a likely fimbrin-binding site on actin. J Cell Biol 126: 413–422

    Article  PubMed  CAS  Google Scholar 

  • Huffaker TC, Thomas JH, Botstein D (1988) Diverse effects of beta-tubulin mutations on microtubule formation and function. J Cell Biol 106: 1997–2010

    Article  PubMed  CAS  Google Scholar 

  • Johannes FJ, Gallwitz D (1991) Site-directed mutagenesis of the yeast actin gene: a test for actin function in vivo. Embo J 10: 3951–3958

    PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin:DNase I complex. Nature 347: 37–44

    Article  PubMed  CAS  Google Scholar 

  • Karpova TS, Tatchell K, Cooper JA (1995) Actin filaments in yeast are unstable in the absence of capping protein or fimbrin. J Cell Biol 131: 1483–1493

    Article  PubMed  CAS  Google Scholar 

  • Kron SJ, Styles CA, Fink GR (1994) Symmetric cell division in pseudohyphae of the yeast Saccharomyces cerevisiae. Mol Biol Cell 5: 1003–1022

    PubMed  CAS  Google Scholar 

  • Kuang B, Rubenstein PA (1997a) Beryllium fluoride and phalloidin restore polymerizability of a mutant yeast actin (V266G, L267G) with severely decreased hydrophobicity in a subdomain 3/4 loop. J Biol Chem 272: 1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Kuang B, Rubenstein PA (1997b) The effects of severely decreased hydrophobicity in a subdomain 3/4 loop on the dynamics and stability of yeast G-actin. J Biol Chem 272: 4412–4418

    Article  PubMed  CAS  Google Scholar 

  • Kübler E, Riezman H (1993) Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J 12: 2855–2862

    PubMed  Google Scholar 

  • Lappalainen P, Drubin DG (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388: 78–82

    Article  PubMed  CAS  Google Scholar 

  • Lappalainen P, Fedorov EV, Fedorov AA, Almo SC, Drubin DG (1997) Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J 16: 5520–5530

    Article  PubMed  CAS  Google Scholar 

  • Lew DJ, Reed SI (1995) A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J Cell Biol 129: 739–749

    Article  PubMed  CAS  Google Scholar 

  • Lorenz M, Popp D, Holmes KC (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of a directed mutation algorithm. J Mol Biol 234: 826–836

    Article  PubMed  CAS  Google Scholar 

  • Miller CJ, Doyle TC, Bobkova E, Botstein D, Reisler E (1996a) Mutational analysis of the role of hydrophobic residues in the 338–348 helix on actin in actomyosin interactions. Biochemistry 35: 3670–3676

    Article  PubMed  CAS  Google Scholar 

  • Miller C, Wong W, Bobkova E, Rubenstein P, Reisler E (1996b) Mutational Analysis of the role of the N terminus of actin in actomyosin interactions. Comparison with other mutant actins and implications for the cross-bridge cycle. Biochemistry 35: 16557–16565

    Google Scholar 

  • Nefsky B, Bretscher A (1992) Yeast actin is relatively well behaved. Eur J Biochem 206:949–955 Novick P, Botstein D (1985) Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 40: 405–416

    Google Scholar 

  • Orlova A, Chen X, Rubenstein PA, Egelman EH (1997) Modulation of yeast F-actin structure by a mutation in the nucleotide-binding cleft. J Mol Biol 271: 235–243

    Article  PubMed  CAS  Google Scholar 

  • Palmer RE, Sullivan DS, Huffaker T, Koshland D (1992) Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 119: 583–593

    Article  PubMed  CAS  Google Scholar 

  • Patterson GM, Smith CD, Kimura LH, Britton BA, Carmeli S (1993) Action of tolytoxin on cell morphology, cytoskeletal organization, and actin polymerization. Cell Motil Cytoskel 24: 39–48

    Article  CAS  Google Scholar 

  • Pawson T, Gish GD (1992) SH2 and SH3 domains: from structure to function. Cell 71: 359–362

    Article  PubMed  CAS  Google Scholar 

  • Read EB, Okamura HH, Drubin DG (1992) Actin-and tubulin-dependent functions during Saccharomyces cerevisiae mating projection formation. Mol Biol Cell 3: 429–444

    PubMed  CAS  Google Scholar 

  • Schutt CE, Lindberg U, Myslik J, Strauss N (1989) Molecular packing in profilin: actin crystals and its implications. J Mol Biol 209: 735–746

    Article  PubMed  CAS  Google Scholar 

  • Schutt CE, Myslik JC, Rozycki MD, Goonesekere NC, Lindberg U (1993) The structure of crystalline profilin-beta-actin. Nature 365: 810–816

    Article  PubMed  CAS  Google Scholar 

  • Sheterline P, Clayton J, Sparrow J (1996) Protein profile: actins. Academic Press, London

    Google Scholar 

  • Shortle D, Novick P, Botstein D (1984) Construction and genetic characterization of temperaturesensitive mutant alleles of the yeast actin gene. Proc Natl Acad Sci USA 81: 4889–4893

    Article  PubMed  CAS  Google Scholar 

  • Simon VR, Swayne TC, Pon LA (1995) Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J Cell Biol 130: 345–354

    Article  PubMed  CAS  Google Scholar 

  • Smith MG, Simon VR, O’Sullivan H, Pon LA (1995) Organelle-cytoskeletal interactions: actin mutations inhibit meiosis-dependent mitochondrial rearrangement in the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 6: 1381–1396

    PubMed  CAS  Google Scholar 

  • Strzelecka-Golaszewska H, Moraczewska J, Khaitlina SY, Mossakowska M (1993) Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion. Eur J Biochem 211: 731–742

    Article  PubMed  CAS  Google Scholar 

  • Tirion MM, ben-Avraham D, Lorenz M, Holmes KC (1995) Normal modes as refinement parameters for the F-actin model. Biophys J 68: 5–12

    Article  PubMed  CAS  Google Scholar 

  • Wertman K, Drubin D, Botstein D (1992) Systematic mutational analysis of the yeast ACT1 gene. Genetics 132: 337–350

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Belmont, L.D., Drubin, D.G. (2001). Actin Structure Function Relationships Revealed by Yeast Molecular Genetics. In: dos Remedios, C.G., Thomas, D.D. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46560-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46560-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53675-5

  • Online ISBN: 978-3-540-46560-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics