Skip to main content

Divalent Cations, Nucleotides, and Actin Structure

  • Chapter
Molecular Interactions of Actin

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 32))

Abstract

Actin has one high-affinity site for a divalent cation, with a Kd for Ca2+ and Mg2+ in the nanomolar range. This binding site is located at the bottom of the cleft between the two domains of the molecule (Fig. 1). The cation is coordinated not only by amino acid residues but also by the oxygen of the γ- and/or β- phosphate groups of the nucleotide, ADP or ATP respectively, which is bound further up in the cleft (Valentin-Ranc and Carlier 1989; Kabsch et al. 1990). The tightly bound cation of G-actin exchanges with other divalent cations by a simple competitive mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams SB, Reisler E (1994) Sequence 18-29 on actin: antibody and spectroscopic probing of conformational changes. Biochemistry 33: 14426 - 14433

    Article  PubMed  CAS  Google Scholar 

  • Attri AK, Lewis MS, Korn ED (1991) The formation of actin oligomers studied by analytical ultracentrifugation. J Biol Chem 266: 6815 - 6824

    PubMed  CAS  Google Scholar 

  • Barden JA, dos Remedios CG (1985) Conformational changes in actin resulting from Ca2`/Mg2+ exchange as detected by proton NMR spectroscopy. Eur J Biochem 146: 5 - 8

    Article  PubMed  CAS  Google Scholar 

  • Barden JA, Wu C-SC, dos Remedios CG (1983) Actin monomer conformation under polymerizing conditions studied by proton nuclear magnetic resonance and circular dichroism spectroscopy. Biochim Biophys Acta 748: 230 - 235

    Article  PubMed  CAS  Google Scholar 

  • ben-Avraham D, Tirion MM (1995) Dynamic and elastic properties of F-actin: a normal-modes analysis. Biophys J 68: 1231 - 1245

    Article  PubMed  CAS  Google Scholar 

  • Borejdo J, Muhlrad A, Leibovich SJ, Oplatka A (1981) Polymerization of G-actin by hydrodynamic shear stresses. Biochim Biophys Acta 667: 118 - 131

    Article  PubMed  CAS  Google Scholar 

  • Bremer A, Aebi U (1992) The structure of the F-actin filament and the actin molecule. Curr Opin Cell Biol 4: 20 - 26

    Article  PubMed  CAS  Google Scholar 

  • Brenner SL, Korn ED (1981) Stimulation of actin ATPase activity by cytochalasins provides evidence for a new species of monomeric actin. J Biol Chem 256: 8663 - 8670

    PubMed  CAS  Google Scholar 

  • Carlier M-F (1991) Actin: protein structure and filament dynamics. J Biol Chem 266: 1 - 4

    PubMed  CAS  Google Scholar 

  • Carlier M-F, Pantaloni D, Korn ED (1986a) Fluorescence measurements of the binding of cations to high-affinity and low-affinity sites on ATP-G-actin. J Biol Chem 261: 10778 - 10784

    PubMed  CAS  Google Scholar 

  • Carlier M-F, Pantaloni D, Korn ED (1986b) The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis. J Biol Chem 261: 10785 - 10792

    PubMed  CAS  Google Scholar 

  • Chen X, Cook RK, Rubenstein PA (1993) Yeast actin with a mutation in the “hydrophobic plug” between subdomains 3 and 4 (L266D) displays a cold-sensitive polymerization defect. J Cell Biol 123: 1185 - 1195

    Article  PubMed  CAS  Google Scholar 

  • Chik JK, Lindberg U, Schutt CE (1996) The structure of an open state of ß-actin at 2.65 A resolution. J Mol Biol 263: 607 - 623

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Buhle EL, Jr, Walker SB, Tsong TY, Pollard TD (1983) Kinetic evidence for a monomer activation step in actin polymerization. Biochemistry 22: 2193 - 2202

    Article  PubMed  CAS  Google Scholar 

  • Crosbie RH, Miller C, Cheung P, Goodnight T, Muhlrad A, Reisler E (1994) Structural connectivity in actin: effect of C-terminal modifications on the properties of actin. Biophys J 67: 1957 - 1964

    Article  PubMed  CAS  Google Scholar 

  • dos Remedios CG, Barden JA (1983) in Actin Structure and Function in Muscle and Nonmuscle Cells. Academic Press, Sydney pp. 1 - 336

    Google Scholar 

  • dos Remedios CG, Moens PDJ (1995) Actin and the actomyosin interface: a review. Biochim Biophys Acta 1228: 99 - 124

    Article  PubMed  Google Scholar 

  • Egelman ED, Orlova A (1995) New insights into actin filament dynamics. Curr Opin Struct Biol 5: 172 - 180

    Article  PubMed  CAS  Google Scholar 

  • Estes JE, Selden LA, Kinosian HJ, Gershman LC (1992) Tightly-bound divalent cation of actin. J Muscle Res Cell Motil 13: 272 - 284

    Article  PubMed  CAS  Google Scholar 

  • Feng L, Kim E, Lee W-L, Miller CJ, Kuang B, Reisler E, Rubenstein PA (1997) Fluorescence probing of yeast actin subdomain 3/4 hydrophobic loop 262-274. J Biol Chem 272: 16829 - 16837

    Article  PubMed  CAS  Google Scholar 

  • Fievez S, Carlier M-F, Pantaloni D (1997) Kinetics of myosin subfragment-1-induced condensation of G-actin into oligomers, precursors in the assembly of F-actin-S1. Role of the tightly bound metal ion and ATP hydrolysis. Biochemistry 36: 11843-11850

    Google Scholar 

  • Fisher AJ, Curmi PMG, Barden JA, dos Remedios CG (1983) A reinvestigation of actin monomer conformation under polymerizing conditions based on rates of enzymatic digestion and ultraviolet difference spectroscopy. Biochim Biophys Acta 748: 220 - 229

    Article  PubMed  CAS  Google Scholar 

  • Frieden C (1982) The Mgt+-induced conformational change in rabbit skeletal muscle G-actin. J Biol Chem 257: 2882 - 2886

    PubMed  CAS  Google Scholar 

  • Frieden C (1983) Polymerization of actin: mechanism of the Mg2+-induced process at pH 8 and 20°C. Proc Natl Acad Sci USA 80: 6513 - 6517

    Article  PubMed  CAS  Google Scholar 

  • Frieden C, Patane K (1985) Differences in G-actin containing bound ATP or ADP: the Mg2+- induced conformational change requires ATP. Biochemistry 24: 4192 - 4196

    Article  PubMed  CAS  Google Scholar 

  • Frieden C, Lieberman D, Gilbert HR (1980) A fluorescent probe for conformational changes in skeletal muscle G-actin. J Biol Chem 255: 8991 - 8993

    PubMed  CAS  Google Scholar 

  • Gershman LC, Newman J, Selden LA, Estes JE (1984) Bound-cation exchange affects the lag phase in actin polymerization. Biochemistry 23: 2199 - 2203

    Article  PubMed  CAS  Google Scholar 

  • Gershman LC, Selden LA, Kinosian HJ, Estes JE (1989) Preparation and polymerization properties of monomeric ADP-actin. Biochim Biophys Acta 995: 109 - 115

    Article  PubMed  CAS  Google Scholar 

  • Goddette DW, Uberbacher EC, Bunick GJ, Frieden C (1986) Formation of actin dimers as studied by small angle neutron scattering. J Biol Chem 261: 2605 - 2609

    PubMed  CAS  Google Scholar 

  • Heintz D, Kany H, Kalbitzer HR (1996) Mobility of the N-terminal segment of rabbit skeletal muscle F-actin detected by 2+H and “F nuclear magnetic resonance spectroscopy. Biochemistry 35: 12686–12693

    Article  PubMed  CAS  Google Scholar 

  • Holmes KC, Popp D, Gebhard D, Kabsch W (1990) Atomic model of the actin filament. Nature 347: 44 - 49

    Article  PubMed  CAS  Google Scholar 

  • Isambert H, Venier P, Maggs AC, Fattoum A, Kassab R, Pantaloni D, Carlier M-F (1995) Flexibility of actin filaments derived from thermal fluctuations. J Biol Chem 270: 11437 - 11444

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347: 37-44

    Google Scholar 

  • Kasai M,Asakura S, Oosawa F (1962a) The G-F-equilibrium in actin solutions under various conditions. Biochim Biophys Acta 57: 13 - 21

    Article  Google Scholar 

  • Kasai M, Asakura S, Oosawa F (1962b) The cooperative nature of G-F transformation of actin. Biochim Biophys Acta 57: 22 - 31

    Article  PubMed  CAS  Google Scholar 

  • Kasprzak AA (1994) Myosin subfragment 1 activates ATP hydrolysis on Mgt2+-G-actin. Biochemistry 33: 12456 - 12462

    Article  PubMed  CAS  Google Scholar 

  • Khaitlina S, Wawro B, Pliszka B, Strzelecka-Golaszewska H (1996) Conformational changes associated with the monomer activation step of actin polymerization. J Muscle Res Cell Motil 17: 122 - 123

    Google Scholar 

  • Kim E, Motoki M, Seguro K, Muhlrad A, Reisler E (1995) Conformational changes in subdomain 2 of G-actin: fluorescence probing by dansyl ethylenediamine attached to Gln-41. Biophys J 69: 2024 - 2032

    Article  PubMed  CAS  Google Scholar 

  • Kinosian HJ, Selden LA, Estes JE, Gershman LC (1993) Nucleotide binding to actin. Cation dependence of nucleotide dissociation and exchange rates. J Biol Chem 268: 8683-8691

    Google Scholar 

  • Konno K (1987) Functional, chymotryptically split actin and its interaction with myosin subfragment 1. Biochemistry 26: 3582 - 3589

    Article  PubMed  CAS  Google Scholar 

  • Kuang B, Rubenstein PA (1997) The effects of severely decreased hydrophobicity in a subdomain 3/4 loop on the dynamics and stability of yeast G-actin. J Biol Chem 272: 4412 - 4418

    Article  PubMed  CAS  Google Scholar 

  • Kwon H, Hardwicke PMD, Collins JH, Zhao X, Szent-Györgyi AG (1994) Myosin filament ATPase is enhanced by intramolecularly cross-linked actin. J Muscle Res Cell Motil 15: 555 - 562

    Article  PubMed  CAS  Google Scholar 

  • Lorenz M, Popp D, Holmes KC (1993) Refinement of the F-actin model against X-ray fiber diffraction data by the use of a direct mutation algorithm. J Mol Biol 234: 826 - 836

    Article  PubMed  CAS  Google Scholar 

  • Maruyama K (1981) Effects of trace amounts of Ca2+ and Mgt2+ on the polymerization of actin. Biochim Biophys Acta 667: 139 - 142

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Gooch JT, Mannherz H-G, Weeds AG (1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364: 685 - 692

    Article  PubMed  CAS  Google Scholar 

  • Méjean C, Hué HK, Pons F, Roustan C, Benyamin Y (1988) Cation binding sites on actin: a structural relationship between antigenic epitopes and cation exchange. Biochem Biophys Res Commun 152: 368 - 375

    Article  PubMed  Google Scholar 

  • Mihashi K, Nakabayashi M,Yoshimura H, Ohnuma H (1979) Absorption, fluorescence, and linear dichroism spectra of fluorescein mercuric acetate ( FMA) bound to F-actin. J Biochem 85: 359-366

    Google Scholar 

  • Miki M (1991) Detection of conformational changes in actin by fluorescence resonance energy transfer between tyrosine-69 and cysteine-374. Biochemistry 30: 10878 - 10884

    Article  PubMed  CAS  Google Scholar 

  • Miki M, Kouyama T (1994) Domain motion in actin observed by fluorescence resonance energy transfer. Biochemistry 33: 10171 - 10177

    Article  PubMed  CAS  Google Scholar 

  • Moraczewska J, Strzelecka-Golaszewska H, Moens PDJ, dos Remedios CG (1996) Structural changes in subdomain 2 of G-actin observed by fluorescence spectroscopy. Biochem J 317: 605 - 611

    PubMed  CAS  Google Scholar 

  • Moraczewska J, Wawro B, Seguro K, Strzelecka-Golaszewska H (1999) Divalent cation-, nucleotide-, and polymerization-dependent changes in the conformation of subdomain 2 of actin. Biophys J 77: 373 - 385

    Article  PubMed  CAS  Google Scholar 

  • Mossakowska M, Moraczewska J, Khaitlina S, Strzelecka-Golaszewska H (1993) Proteolytic removal of three C-terminal residues of actin alters the monomer-monomer interactions. Biochem J 289: 897 - 902

    PubMed  CAS  Google Scholar 

  • Mozo-Villarias A, Ware BR (1985) Actin oligomers below the critical concentration detected by fluorescence photobleaching recovery. Biochemistry 24: 1544 - 1548

    Article  CAS  Google Scholar 

  • Muhlrad A, Cheung P, Phan BC, Miller C, Reisler E (1994) Dynamic properties of actin: structural changes induced by beryllium fluoride. J Biol Chem 269: 11852 - 11858

    PubMed  CAS  Google Scholar 

  • Newman J, Estes JE, Selden LA, Gershman LC (1985) Presence of oligomers at subcritical actin concentrations. Biochemistry 24: 1538 - 1544

    Article  CAS  Google Scholar 

  • Nyitrai M, Hild G, Belâgyi J, Somogyi B (1997) Spectroscopic study of conformational changes in subdomain 1 of G-actin: influence of divalent cations. Biophys J 73: 2023 - 2032

    Article  PubMed  CAS  Google Scholar 

  • Nyitrai M, Hild G, Belâgyi J, Somogyi B (1999) The flexibility of actin filaments as revealed by fluorescence resonance energy transfer. The influence of divalent cations. J Biol Chem 274: 12996-13001

    Google Scholar 

  • Nyitrai M, Hild G, Lakos ZS, Somogyi B (1998) Effect of Cat2+-Mg2+ exchange on the flexibility and/or conformation of the small domain in monomeric actin. Biophys J 74: 2474 - 2481

    Article  PubMed  CAS  Google Scholar 

  • Oosawa F (1983) Macromolecular assembly of actin. In: Stracher A (ed) Muscle and nonmuscle motility, vol 1 Academic Press, New York, pp. 151 - 216

    Google Scholar 

  • Oosawa F, Asakura S, Hotta K, Imai N, Ooi T (1959) G-F transformation of actin as a fibrous condensation. J Polymer Sci 37: 323 - 336

    Article  CAS  Google Scholar 

  • Orlova A, Egelman EH (1992) Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis. J Mol Biol 227: 1043 - 1053

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Egelman EH (1993) A conformational change in the actin subunit can change the flexibility of the actin filament. J Mol Biol 232: 334 - 341

    Article  PubMed  CAS  Google Scholar 

  • Orlova A, Egelman EH (1995) Structural dynamics of F-actin. Changes in the C terminus. J Mol Biol 245: 582-597

    Google Scholar 

  • Orlova A, Egelman EH (1997) Cooperative rigor binding of myosin to actin is a function of F-actin structure. J Mol Biol 265: 469 - 474

    Article  PubMed  CAS  Google Scholar 

  • Page R, Lindberg U, Schutt CE (1988) Domain motions in actin. J Mol Biol 28: 463 - 473

    Google Scholar 

  • Pardee LD, Spudich JA (1982) Mechanism of K2+-induced actin assembly. J Cell Biol 93: 648 - 654

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Mooseker MS (1981) Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol 88: 654 - 659

    Article  PubMed  CAS  Google Scholar 

  • Rich SA, Estes JE (1976) Detection of conformational changes in actin by proteolytic digestion: evidence for a new monomeric species. J Mol Biol 104: 777 - 792

    Article  PubMed  CAS  Google Scholar 

  • Rouayrenc J-F, Travers F (1981) The first step in polymerisation of actin. Eur J Biochem 116: 73 - 77

    Article  PubMed  CAS  Google Scholar 

  • Scharf RE, Newman J (1995) Mg-and Ca-actin filaments appear virtually identical in steady-state as determined by dynamic light scattering. Biochim Biophys Acta 1253: 129 - 132

    Article  PubMed  Google Scholar 

  • Schutt CE, Myslik JC, Rozycki MD, Goonesekere NCW, Lindberg U (1993) The structure of crystalline profilin-actin. Nature 365: 810 - 816

    Article  PubMed  CAS  Google Scholar 

  • Schwyter DH, Kron SJ, Toyoshima YY, Spudich JA, Reisler E (1990) Subtilisin cleavage of actin inhibits in vitro sliding movement of actin filaments over myosin. J Cell Biol 111: 465 - 470

    Article  PubMed  CAS  Google Scholar 

  • Selden LA, Gershman LC, Estes JE (1986) A kinetic comparison between Mg-actin and Ca-actin. J Muscle Res Cell Motil 7: 215 - 224

    Article  PubMed  CAS  Google Scholar 

  • Slósarek G, Heinz D, Kalbitzer HR (1994) Mobile segments in rabbit skeletal muscle F-actin detected by nuclear magnetic resonance spectroscopy. FEBS Lett 351: 405 - 410

    Article  PubMed  Google Scholar 

  • Steinmetz MO, Goldie KN, Aebi U (1997) A correlative analysis of actin filament assembly, structure, and dynamics. J Cell Biol 138: 559 - 574

    Article  PubMed  CAS  Google Scholar 

  • Strzelecka-Golaszewska H, Moraczewska J, Khaitlina SY, Mossakowska M (1993) Localization of the tightly bound divalent-cation-dependent and nucleotide-dependent conformation changes in G-actin using limited proteolytic digestion. Eur J Biochem 211: 731 - 742

    Article  PubMed  CAS  Google Scholar 

  • Strzelecka-Golaszewska H, Prochniewicz E, Drabikowski W (1978) Interaction of actin with divalent cations. I. The effect of various cations on the physical state of actin. Eur J Biochem 88: 219-227

    Google Scholar 

  • Strzelecka-Golaszewska H, Wozniak A, Hult T, Lindberg U (1996) Effects of the type of divalent cation, Ca2+ or Mg2+, bound at the high-affinity site and of the ionic composition of the solution on the structure of F-actin. Biochem J 316: 713 - 721

    PubMed  CAS  Google Scholar 

  • Tirion MM, ben-Avraham D (1993) Normal mode analysis of G-actin. J Mol Biol 230: 186 - 195

    Article  PubMed  CAS  Google Scholar 

  • Tirion MM, ben-Avraham D, Lorenz M, Holmes KC (1995) Normal modes as refinement parameters for the F-actin model. Biophys J 68: 5 - 12

    Article  PubMed  CAS  Google Scholar 

  • Tobacman LS, Korn ED (1983) The kinetics of actin nucleation and polymerization. J Biol Chem 258: 3207 - 3214

    PubMed  CAS  Google Scholar 

  • Valentin-Ranc C, Carlier M-F (1989) Evidence for the direct interaction between tightly bound metal ion and ATP on actin. J Biol Chem 264: 20871 - 20880

    PubMed  CAS  Google Scholar 

  • Wegner A (1976) Head to tail polymerization of actin. J Mol Biol 108: 139 - 150

    Article  PubMed  CAS  Google Scholar 

  • Wriggers W, Schulten K (1997) Stability and dynamics of G-actin: back door water diffusion and behavior of subdomain 3/4 loop. Biophys J 73: 624 - 639

    Article  PubMed  CAS  Google Scholar 

  • Yasuda R, Miyata H, Kinosita K, Jr (1996) Direct measurement of the torsional rigidity of single actin filaments. J Mol Biol 263: 227 - 236

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Strzelecka-Gołaszewska, H. (2001). Divalent Cations, Nucleotides, and Actin Structure. In: dos Remedios, C.G., Thomas, D.D. (eds) Molecular Interactions of Actin. Results and Problems in Cell Differentiation, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46560-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46560-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53675-5

  • Online ISBN: 978-3-540-46560-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics