Skip to main content

Ligands for Siglecs

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 33))

Abstract

Sialic acids (Sia) are derivatives of the nine-carbon neuraminic acid monosaccharide (Fig. 1). To date, about 40 of these neuraminic acid modifications have been found to occur in nature (Table 1). Their structure, occurrence and metabolic pathways have been reviewed in detail (Rosenberg 1995; Kelm and Schauer 1997; Schauer and Kamerling 1997; Varki 1997).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barclay AN, Brown MH (1997) Heterogeneity of interactions mediated by membrane glycoproteins of lymphocytes. Biochem Soc Trans 25: 224–228

    PubMed  CAS  Google Scholar 

  • Barnes YC, Skelton TP, Stamenkovic I, Sgroi DC (1999) Sialylation of the sialic acid binding lectin sialoadhesin regulates its ability to mediate cell adhesion. Blood 93: 1245–1252

    PubMed  CAS  Google Scholar 

  • Bevilacqua M, Butcher E, Furie B, Gallatin M, Gimbrone M, Harlan J, Kishimoto K, Lasky L, McEver R, Paulson J, Rosen S, Seed B, Siegelman M, Springer T, Stoolman L, Tedder T, Varki A, Wagner D, Weissman I, Zimmerman G (1991) Selectins–a family of adhesion receptors. Cell 67: 233–233

    Article  PubMed  CAS  Google Scholar 

  • Braesch-Andersen S, Stamenkovic I (1994) Sialylation of the B lymphocyte molecule CD22 by a 2,6-sialyltransferase is implicated in the regulation of CD22-mediated adhesion. J Biol Chem 269: 11783–11786

    PubMed  CAS  Google Scholar 

  • Campbell MA, Klinman NR (1995) Phosphotyrosine-dependent association between CD22 and protein tyrosine phosphatase 1 C. Eur J Immunol 25: 1573–1579

    Article  PubMed  CAS  Google Scholar 

  • Collins BE, Kiso M, Hasegawa A, Tropak MB, Roder JC, Crocker PR, Schnaar RL (1997a) Binding specificities of the sialoadhesin family of I-type lectins — sialic acid linkage and substructure requirements for binding of myelin-associated glycoprotein, Schwann cell myelin protein, and sialoadhesin. J Biol Chem 272: 16889–16895

    Article  PubMed  CAS  Google Scholar 

  • Collins BE, Yang LJ, Mukhopadhyay G, Filbin MT, Kiso M, Hasegawa A, Schnaar RL (1997b) Sialic acid specificity of myelin-associated glycoprotein binding. J Biol Chem 272: 1248–1255

    Article  PubMed  CAS  Google Scholar 

  • Cornish AL, Freeman S, Forbes G, Ni J, Zhang M, Cepeda M, Gentz R, Augustus M, Carter KC, Crocker PR (1998) Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 92: 2123–2132

    PubMed  CAS  Google Scholar 

  • Crocker PR, Feizi T (1996) Carbohydrate recognition systems: functional triads in cell-cell interactions. Curr Opin Struct Biol 6: 679–691

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Kelm S (1996) Methods for studying the cellular binding properties of lectin-like receptors. In: Herzenberg LA, Weir DM, Blackwell C (eds) Weir’s handbook of experimental immunology. Blackwell Science, Cambridge, pp 166.1–166. 11

    Google Scholar 

  • Crocker PR, Kelm S, Dubois C, Martin B, McWilliam AS, Shotton DM, Paulson JC, Gordon S (1991) Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J 10: 1661–1669

    PubMed  CAS  Google Scholar 

  • Crocker PR, Mucklow S, Bouckson V, McWilliam A, Willis AC, Gordon S, Milon G, Kelm S, Bradfield P (1994) Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J 13: 4490–4503

    PubMed  CAS  Google Scholar 

  • Crocker PR, Freeman S, Gordon S, Kelm S (1995) Sialoadhesin binds preferentially to cells of the granulocytic lineage. J Clin Invest 95: 635–643

    Article  PubMed  CAS  Google Scholar 

  • Crocker PR, Clark EA, Filbin MT, Gordon S, Jones Y, Kehrl JH, Kelm S, Le Douarin NM, Powell L, Roder J, Schnaar R, Sgroi D, Stamenkovic I, Schauer R, Schachner M, Tedder T, van den Berg TK, van der Merwe PA, Watt SM,Varki A (1998) Siglecs–a family of sialic acid-binding lectins. Glycobiology 8 (Glycoforum 2): 3–31

    Google Scholar 

  • Crocker PR, Vinson M, Kelm S, Drickamer K (1999) Molecular analysis of sialoside binding to sialoadhesin by NMR and site-directed mutagenesis. Biochem J 341: 355–361

    Article  PubMed  CAS  Google Scholar 

  • Falco M, Biassoni R, Bottino C, Vitale M, Sivori S, Augugliaro R, Moretta L, Moretta A (1999) Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J Exp Med 190: 793–801

    Article  PubMed  CAS  Google Scholar 

  • Freeman SD, Kelm S, Barber EK, Crocker PR (1995) Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 85: 2005–2012

    PubMed  CAS  Google Scholar 

  • Gagneux P, Varki A (1999) Evolutionary considerations in relating oligosaccharide diversity to biological function. Glycobiology 9: 747–755

    Article  PubMed  CAS  Google Scholar 

  • Hanasaki K, Powell LD, Varki A (1995) Binding of human plasma sialoglycoproteins by the B cell-specific lectin CD22–selective recognition of immunoglobulin M and haptoglobin. J Biol Chem 270: 7543–7550

    Article  PubMed  CAS  Google Scholar 

  • Hanasaki K, Varki A, Powell LD (1995) CD22-mediated cell adhesion to cytokine-activated human endothelial cells. Positive and negative regulation by a2–6-sialylation of cellular glycoproteins. J Biol Chem 270: 7533–7542

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Suzuki M, Crocker PR, Suzuki A (1998) A streptavidin-based neoglycoprotein carrying more than 140 GT1b oligosaccharides: quantitative estimation of the binding specificity of murine sialoadhesin expressed on CHO cells. J Biochem Tokyo 123: 468–478

    Article  PubMed  CAS  Google Scholar 

  • Herrmann M, von der Lieth C-W, Stehling P, Reutter W, Pawlita M (1997) Consequences of a subtle sialic acid modification on the murine polyoma virus receptor. J Virol 71: 5922–5931

    PubMed  CAS  Google Scholar 

  • Hirst GK (1941) Agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 94: 22–23

    Article  PubMed  CAS  Google Scholar 

  • Hirst GK (1942) Adsorption of influenza virus hemagglutinins and virus by red blood cells. J Exp Med 76: 195–209

    Article  PubMed  CAS  Google Scholar 

  • Janin J (1997) Angströms and calories. Structure 5: 473–479

    Article  PubMed  CAS  Google Scholar 

  • Jaramillo ML, Afar DEH, Almazan G, Bell JC (1994) Identification of tyrosine 620 as the major phosphorylation site of myelin associated glycoprotein and its implication in interacting with signaling molecules. J Biol Chem 269: 27240–27245

    PubMed  CAS  Google Scholar 

  • Kayser H, Zeitler R, Kannicht C, Grunow D, Nuck R, Reutter W (1992) Biosynthesis of a non-physiological sialic acid in different rat organs, using N-propanoyl-D-hexosamines as precursors. J Biol Chem 267: 16934–16938

    PubMed  CAS  Google Scholar 

  • Kelm S, Pelz A, Schauer R, Filbin MT, Tang S, de Bellard ME, Schnaar RL, Mahoney JA, Hartnell A, Bradfield P, Crocker PR (1994) Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol 4: 965–972

    Article  PubMed  CAS  Google Scholar 

  • Kelm S, Brossmer R, Gross HJ, Strenge K, Schauer R (1998) Functional groups of sialic acids involved in binding to sialoadhesins defined by synthetic analogues. Eur J Biochem 255: 663–672

    Article  PubMed  CAS  Google Scholar 

  • Kelm S, Schauer R (1997) Sialic acids in molecular and cellular interactions. Int Rev Cytol 175: 137–240

    Article  PubMed  CAS  Google Scholar 

  • Kelm S, Schauer R, Manuguerra JC, Gross HJ, Crocker PR (1994) Modifications of cell surface sialic acids modulate cell adhesion mediated by sialoadhesin and CD22. Glycoconjugate J 11: 576–585

    Article  CAS  Google Scholar 

  • Keppler OT, Stehling P, Herrmann M, Kayser H, Grunow D, Reutter W, Pawlita M (1995) Biosynthetic modulation of sialic acid-dependent virus-receptor interactions of two primate polyoma viruses. J Biol Chem 270: 1308–1314

    Article  PubMed  CAS  Google Scholar 

  • Kopitz J, von Reitzenstein C, Sinz K, Cantz M (1996) Selective ganglioside desialylation in the plasma membrane of human neuroblastoma cells. Glycobiology 6: 367–376

    Article  PubMed  CAS  Google Scholar 

  • Lasky LA (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu Rev Biochem 64: 113–139

    Article  PubMed  CAS  Google Scholar 

  • Law CL, Sidorenko SP, Chandran KA, Zhao ZH, Shen SH, Fischer EH, Clark EA (1996) CD22 associates with protein tyrosine phosphatase 1 C, Syk, and phospholipase C-1y upon B cell activation. J Exp Med 183: 547–560

    Article  PubMed  CAS  Google Scholar 

  • Lowe JB, Stoolman LM, Nair RP, Larsen RD, Berhend TL, Marks RM (1990) ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 63: 475–484

    Article  PubMed  CAS  Google Scholar 

  • May AP, Robinson RC, Vinson M, Crocker PR, Jones EY (1998) Crystal structure of the N-terminal domain of sialoadhesin in complex with 3’ sialyllactose at 1.85 Aangström resolution. Mol Cell 1: 719–728

    Article  PubMed  CAS  Google Scholar 

  • McClelland L, Hare R (1941) The adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus in the embryonated egg. Can J Public Health 32: 530–538

    Google Scholar 

  • Nath D, van der Merwe PA, Kelm S, Bradfield P, Crocker PR (1995) The amino-terminal immunoglobulin-like domain of sialoadhesin contains the sialic acid binding site–comparison with CD22. J Biol Chem 270: 26184–26191

    Article  PubMed  CAS  Google Scholar 

  • Nicoll G, Ni J, Liu D, Klenerman P, Munday J, Dubock S, Mattei M-G, Crocker PR (1999) Identification and characterisation of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes. J Biol Chem274: 34086–34095

    Article  Google Scholar 

  • Patel N, Brinkman-Van der Linden ECM, Altmann SW, Balasubramanian S, Timans CS, Peterson D, Bazan JF, Varki A, Kastelein RA (1999) OB-BP1/Siglec-6–a leptin-and sialic acid-binding protein of the immunoglobulin superfamily. J Biol Chem 427: 22729–22738

    Article  Google Scholar 

  • Phillips ML, Nudelman E, Gaeta FCAPM, Singhal AK, Hakomori S-I, Paulson JC (1990) ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, Sialyl-Le. Science 250: 1130–1132

    Article  Google Scholar 

  • Powell LD, Varki A (1994) The oligosaccharide binding specificities of CD22 b, a sialic acid-specific lectin of B cells. J Biol Chem 269: 10628–10636

    PubMed  CAS  Google Scholar 

  • Powell LD, Sgroi D, Sjoberg ER, Stamenkovic I, Varki A (1993) Natural ligands of the B cell adhesion molecule CD22 b carry N-linked oligosaccharides with a-2,6-linked sialic acids that are required for recognition. J Biol Chem 268: 7019–7027

    PubMed  CAS  Google Scholar 

  • Powell LD, Jain RK, Matta KL, Sabesan S, Varki A (1995) Characterization of sialyloligosaccharide binding by recombinant soluble and native cell-associated CD22–evidence for a minimal structural recognition motif and the potential importance of multisite binding. J Biol Chem 270: 7523–7532

    Article  PubMed  CAS  Google Scholar 

  • Razi N, Varki A (1998) Masking and unmasking of the sialic acid-binding lectin activity of CD22 (Siglec-2) on B lymphocytes. Proc Natl Acad Sci USA 95: 7469–7474

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg A (1995) Biology of the sialic acids. Plenum, New York

    Google Scholar 

  • Sawada N, Ishida H, Collins BE, Schnaar RL, Kiso M (1999) Ganglioside GDla analogues as high-affinity ligands for myelin-associated glycoprotein (MAG). Carbohydr Res 316: 1–5

    Article  PubMed  CAS  Google Scholar 

  • Schauer R (1982) Sialic acids. Adv Carbohydr Chem Biochem 40: 131–234

    Article  PubMed  CAS  Google Scholar 

  • Schauer R, Kamerling JP (1997) Chemistry, biochemistry and biology of sialic acids. In: Montreuil J, Vliegenthart JFG, Schachter H (eds) Glycoproteins II. Elsevier, Amsterdam, pp 243–402

    Chapter  Google Scholar 

  • Schulte RJ, Campbell MA, Fischer WH, Sefton BM (1992) Tyrosine phosphorylation of CD22 during B cell activation. Science 258: 1001–1004

    Article  PubMed  CAS  Google Scholar 

  • Sgroi D, Varki A, Braesch-Andersen S, Stamenkovic I (1993) CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem 268: 7011–7018

    PubMed  CAS  Google Scholar 

  • Sgroi D, Nocks A, Stamenkovic I (1996) A single N-linked glycosylation site is implicated in the regulation of ligand recognition by the I-type lectins CD22 and CD33. J Biol Chem 271: 18803–18809

    Article  PubMed  CAS  Google Scholar 

  • Shi WX, Chammas R, Varki NM, Powell L, Varki A (1996) Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. J Biol Chem 271: 31526–31532

    Article  PubMed  CAS  Google Scholar 

  • Sjoberg ER, Powell LD, Klein A, Varki A (1994) Natural ligands of the B cell adhesion molecule CD22 b can be masked by 9–0-acetylation of sialic acids. J Cell Biol 126: 549–562

    Article  PubMed  CAS  Google Scholar 

  • Strenge K, Schauer R, Bovin N, Hasegawa A, Ishida H, Kiso M, Kelm S (1998) Glycan specificity of myelin-associated glycoprotein and sialoadhesin defined by synthetic oligosaccharides. Eur J Biochem 258: 677–685

    Article  PubMed  CAS  Google Scholar 

  • Strenge K, Schauer R, Kelm S (1999) Binding partners for the myelin-associated glycoprotein of N(2)A neuroblastoma cells. FEBS Lett 444: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Shen YJ, deBellard ME, Mukhopadhyay G, Salzer JL, Crocker PR, Filbin MT (1997) Myelin-associated glycoprotein interacts with neurons via a sialic acid binding site at ARG118 and a distinct neurite inhibition site. J Cell Biol 138: 1355–1366

    Article  PubMed  CAS  Google Scholar 

  • Tiemeyer M, Swiedler SJ, Ishihara M, Moreland M, Schweingruber H, Hirtzer P, Brandley BK (1991) Carbohydrate ligands for endothelial leukocyte adhesion molecule. Proc Natl Acad Sci USA 88: 1138–1142

    Article  PubMed  CAS  Google Scholar 

  • Tropak MB, Roder JC (1997) Regulation of myelin-associated glycoprotein binding by sialylated cis-ligands. J Neurochem 68: 1753–1763

    Article  PubMed  CAS  Google Scholar 

  • Umemori H, Sato S, Yagi T, Aizawa S, Yamamoto T (1994) Initial events of myelination involve Fyn tyrosine kinase signalling. Nature 367: 572–576

    Article  PubMed  CAS  Google Scholar 

  • van der Merwe PA, Crocker PR, Vinson M, Barclay AN, Schauer R, Kelm S (1996) Localization of the putative sialic acid-binding site on the immunoglobulin superfamily cell-surface molecule CD22. J Biol Chem 271: 9273–9280

    Article  PubMed  Google Scholar 

  • Varki A (1997) Sialic acids as ligands in recognition phenomena. FASEB J 11: 248–255

    PubMed  CAS  Google Scholar 

  • Vinson M, van der Merwe PA, Kelm S, May A, Jones EY, Crocker PR (1996) Characterization of the sialic acid-binding site in sialoadhesin by siteirected mutagenesis. J Biol Chem 271: 9267–9272

    Article  PubMed  CAS  Google Scholar 

  • Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B (1990) Recognition by ELAM-1 of the sialylLex determinant on myeloid and tumor cells. Science 250: 1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Wu YJ, Nadler MJS, Brennan LA, Gish GD, Timms JF, Fusaki N, Jongstrabilen J, Tada N, Pawson T, Wither J, Neel BG, Hozumi N (1998) The B-cell transmembrane protein CD72 binds to and is an in vivo substrate of the protein tyrosine phosphatase SHP-1. Curr Biol 8: 1009–1017

    Article  PubMed  CAS  Google Scholar 

  • Yohannan J, Wienands J, Coggeshall KM, Justement LB (1999) Analysis of tyrosine phosphorylation-dependent interactions between stimulatory effector proteins and the B cell co-receptor CD22. J Biol Chem 274: 18769–18776

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelm, S. (2001). Ligands for Siglecs. In: Crocker, P.R. (eds) Mammalian Carbohydrate Recognition Systems. Results and Problems in Cell Differentiation, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46410-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46410-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53670-0

  • Online ISBN: 978-3-540-46410-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics