Skip to main content

Structure and Function of the Macrophage Mannose Receptor

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 33))

Abstract

The mannose receptor acts as a molecular scavenger by mediating Ca2+-dependent recognition and internalization of glycoconjugates terminating in mannose, N-acetylglucosamine or fucose. The receptor was identified when it was found that glycoproteins terminating in GlcNAc or mannose, including lysosomal enzymes, are rapidly cleared from the bloodstream by the liver (Schlesinger et al. 1976). The mannose receptor was found to be located on hepatic endothelial cells and Kupffer cells but not on hepatocytes (Schlesinger et al. 1978). The receptor has since been found on most types of tissue macrophages, including those of the placenta, but not on circulating monocytes (Shepherd et al. 1982). The retinal pigmented epithelium, a phagocytic cell layer, also expresses the mannose receptor (Shepherd et al. 1991). More recently, the mannose receptor has been identified on CD1-positive dendritic cells and Langerhan’s cells (Sallusto et al. 1995; Condaminet et al. 1998).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Banyai L, Patthy L (1991) Evidence for the involvement of type II domains in collagen binding by 72-kDa type IV procollagenase. FEBS Lett 282: 23–25

    Article  PubMed  CAS  Google Scholar 

  • Biessen EAL, Noorman F, van Teijlingen ME, Kuiper J, Barret-Bergshoeff M, Rijken DC, van Berkel TJC (1996) Lysine-based cluster mannosides that inhibit ligand binding to the human mannose receptor at nanomolar concentration. J Biol Chem 271: 28024–28030

    Article  PubMed  CAS  Google Scholar 

  • Biessen EAL, van Teijlingen M, Vietsch H, Barret-Bergshoeff MM, Bijsterbosch MK, Rijken DC, van Berkel TIC, Kuiper J (1997) Antagonists of the mannose receptor and the LDL-receptorrelated protein dramatically delay the clearance of tissue-type plasminogen activator. Circulation 95: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty P, Das PK (1988) Role of mannose/GIcNAc receptors in blood clearance and cellular attachment of Leishmania donovani. Mol Biochem Parasitol 28: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Chen WI, Goldstein JL, Brown MS (1990) NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem 265: 3116–3123

    PubMed  CAS  Google Scholar 

  • Condaminet B, Peguet-Navarro J, Stahl PD, Dalbiez-Gauthier C, Schmitt D, Berthier-Vergnes O (1998) Human epidermal Langerhans cells express the mannose-fucose binding receptor. Eur J Immunol 28: 3541–3551

    Article  PubMed  CAS  Google Scholar 

  • Cool DE, Edgell CJ, Louie GV, Zoller MJ, Brayer GD, MacGillivray RT (1985) Characterization of human blood coagulation factor XII cDNA. Prediction of the primary structure of factor XII and the tertiary structure of beta-factor XIIa. J Biol Chem 260: 13666–13676

    Google Scholar 

  • Drickamer K (1993) Increasing diversity of animal lectin structures. Curr Opin Struct Biol 3: 393–400

    Article  CAS  Google Scholar 

  • Drickamer K, Taylor ME (1993) Biology of animal lectins. Annu Rev Cell Biol 9:237–264

    Google Scholar 

  • Engering AJ, Cella M, Fluisma D, Brockhaus M, Hoefsmit ECM, Lanzavecchia A, Pieters J (1997) The mannose receptor functions as a high capacity and broad specificity antigen receptor in human dendritic cells. Eur J Immunol 27:2417–2425

    Google Scholar 

  • Ezekowitz RAB, Sastry K, Bailly P, Warner A (1990) Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med 172: 1785–1794

    Article  PubMed  CAS  Google Scholar 

  • Ezekowitz RAB, Williams DJ, Koziel H, Armstrong MYK, Warner A, Richards FF, Rose RM (1991) Uptake of Pneumocystis carinii mediated by the macrophage mannose receptor. Nature 351: 155–158

    Article  PubMed  CAS  Google Scholar 

  • Fiete D, Beranek MC, Baenziger JU (1997) The macrophage/endothelial cell mannose receptor cDNA encodes a protein that binds oligosaccharides terminating with SO4–4-GalNAc 31, 4G1cNAc(3 or Man at independent sites. Proc Natl Acad Sci USA 94: 11256–11261

    CAS  Google Scholar 

  • Fiete D, Beranek MC, Baenziger JU (1998) A cysteine-rich domain of the “mannose” receptor mediates Ga1NAc-4-SO4 binding. Proc Natl Acad Sci USA 95: 2089–2093

    Article  PubMed  CAS  Google Scholar 

  • Graves BJ, Crowther RL, Chandran C, Rumberger JM, Li-S, Huang KS, Presky-DH, Familletti PC, Wolitzky BA, Burns DK (1994) Insight into E-selectin/ligand interaction from the crystal structure and mutagenesis of the lec/EGF domains. Nature 367: 532–538

    CAS  Google Scholar 

  • Haltiwanger RS, Hill RL (1986) Isolation of a rat alveolar macrophage lectin. J Biol Chem 261: 7440–7444

    PubMed  CAS  Google Scholar 

  • Hitchen PG, Mullin NP, Taylor ME (1998) Orientation of sugars bound to the principal C-type carbohydrate-recognition domain of the macrophage mannose receptor. Biochem J 333: 601–608

    PubMed  CAS  Google Scholar 

  • Iobst ST, Wormald MR, Weis WI, Dwek RA, Drickamer K (1994) Binding of sugar ligands to Ca (2+)-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR. J Biol Chem 269: 15505–15511

    Google Scholar 

  • Ishizaki J, Hanasaki K, Higashino K, Kishino J, Kikuchi N, Ohara O, Arita H (1994) Molecular cloning of pancreatic group I phospholipase A2 receptor. J Biol Chem 269: 5897–5904

    PubMed  CAS  Google Scholar 

  • Jiang W, Swiggard WJ, Heufler C, Peng M, Mirza A, Steinman RM, Nussenzweig MC (1995) The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing. Nature 375: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Kornblihtt AR, Umezawa K, Vibe-Pedersen K, Baralle FE (1985) Primary structure of human fibronectin: differential splicing may generate at least 10 polypeptides from a single gene. EMBO J 4: 1755–1759

    PubMed  CAS  Google Scholar 

  • Kruskal A, Sastry K, Warner A, Mathieu CE, Ezekowitz RAB (1992) Phagocytic chimeric receptors require both transmembrane and cytoplasmic domains from the mannose receptor. J Exp Med 176: 1673–1680

    Article  PubMed  CAS  Google Scholar 

  • Lambeau G, Ancian P, Barhanin J, Lazdunski M (1994) Cloning and expression of a membrane receptor for secretory phospholipases A2. J Biol Chem 269: 1575–1578

    PubMed  CAS  Google Scholar 

  • Lambeau G, Ancian P, Mattei M-G, Lazdunski M (1995) The human 180-kDa receptor for secretory phospholipases A2. J Biol Chem 270: 8963–8970

    Article  PubMed  Google Scholar 

  • Lennartz MR, Cole FS, Shepherd VL, Wileman TE, Stahl PD (1987) Isolation and characterization of a mannose-specific endocytosis receptor from human placenta. J Biol Chem 262: 9943–9944

    Google Scholar 

  • Lennartz MR, Cole FS, Stahl PD (1989) Biosynthesis and processing of the mannose receptor in human macrophages. J Biol Chem 264: 2385–2390

    PubMed  CAS  Google Scholar 

  • Lobel P, Dahms NM, Kornfeld S (1988) Cloning and sequence analysis of the cation-independent mannose 6-phosphate receptor. J Biol Chem 263: 2563–2570

    PubMed  CAS  Google Scholar 

  • Mullin NP, Hall KT, Taylor ME (1994) Characterization of ligand binding to a carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem 269: 28405–28413

    PubMed  CAS  Google Scholar 

  • Mullin NP, Hitchen PG, Taylor ME (1997) Mechanism of Ca’- and monosaccharide-binding to a C-type carbohydrate-recognition domain of the macrophage mannose receptor. J Biol Chem 272: 5668–5681

    Article  PubMed  CAS  Google Scholar 

  • Ng K K-S, Drickamer K, Weis WI (1996) Structural analysis of monosaccharide recognition by rat liver mannose-binding protein. J Biol Chem 271: 663–674

    Article  PubMed  CAS  Google Scholar 

  • Nicolas J-P, Lambeau G, Lazdunski M (1995) Identification of the binding domain for secretory phospholipases A2 on their M-type 180-kDa membrane receptor. J Biol Chem 270: 28869–28873

    Article  PubMed  CAS  Google Scholar 

  • Otter M, Barrett-Bergshoeff MM, Rijken DC (1991) Binding of tissue-type plasminogen activator by the mannose receptor. J Biol Chem 266: 13931–13935

    PubMed  CAS  Google Scholar 

  • Otter M, Zockova P, Kuiper J, van-Berkel TJ, Barrett-Bergshoeff MM, Rijken DC (1992) Isolation and characterization of the mannose receptor from human liver potentially involved in the plasma clearance of tissue-type plasminogen activator. Hepatology 16: 54–59

    Article  PubMed  CAS  Google Scholar 

  • Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Porcelli SA, Brenner MB, Modlin RL, Kronnenberg M (1997) The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6: 187–197

    Article  PubMed  CAS  Google Scholar 

  • Sallusto F, Cella M, Danieli C, Lanzavecchia A (1995) Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med 182: 389–400

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger LS (1993) Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol 150: 2920–2930

    PubMed  CAS  Google Scholar 

  • Schlesinger P, Rodman JS, Frey M, Lang S, Stahl P (1976) Clearance of lysosomal hydrolases following intravenous infusion. The role of the liver in the clearance of ß-glucuronidase and N-acetyl-(3-D-glucosaminidase. Arch Biochem Biophys 177: 606–614

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger P, Doebber TW, Mandell BF, White R, DeSchryver C, Rodman JS, Miller MJ, Stahl P (1978) Plasma clearance of glycoproteins with terminal mannose and G1cNAc by liver non-parenchymal cells. Biochem J 176: 103–109

    PubMed  CAS  Google Scholar 

  • Shepherd VL, Hoidal JR (1990) Clearance of neutrophil-derived myeloperoxidase by the macrophage mannose receptor. Am J Respir Cell Mol Biol 2: 335–340

    PubMed  CAS  Google Scholar 

  • Shepherd VL, Cambell TJ, Senior RM, Stahl PD (1982) Characterization of the mannose/fucose receptor on human mononuclear phagocytes. J Retic Endothel Soc 32: 423–421

    CAS  Google Scholar 

  • Shepherd VL, Tarnowski BI, McLaughlin BJ (1991) Isolation and characterization of a mannose receptor from human pigment epithelium. Invest Opthalmol Vis Sci 32: 1779–17784

    CAS  Google Scholar 

  • Smedsrod B, Melkko J, Risteli L, Risteli J (1990) Circulating C-terminal propeptide of type I collagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 271: 345–350

    PubMed  CAS  Google Scholar 

  • Stahl PD, Schlesinger PH (1980) Receptor mediated-pinocytosis of mannose/G1cNAc-terminated glycoproteins and lysosomal enzymes by macrophages. Trends Biochem Sci 5: 194–196

    Article  CAS  Google Scholar 

  • Tan MCAA, Momaas AM, Drihout JW, Jordens R, Onderwater JJM, Verwoerd D, Mulder AA, van der Heiden AN, Scheidegger D, Oomen LCJM, Ottenhoff THM, Tulp A, Neefjes JJ, Koning F (1997) Mannose receptor-mediated uptake of antigens strongly enhances HLA class II-restricted antigen presentation by cultured dendritic cells. Eur J Immunol 27: 2426–2435

    Article  PubMed  CAS  Google Scholar 

  • Taylor ME (1997) Evolution of a family of receptors containing multiple C-type carbohydrate-recognition domains. Glycobiology 7: R5 - R8

    Article  Google Scholar 

  • Taylor ME, Drickamer K (1993) Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor. J Biol Chem 268: 399–404

    PubMed  CAS  Google Scholar 

  • Taylor ME, Conary JT, Lennarz MR, Stahl PD, Drickamer K (1990) Primary structure of the mannose receptor contains multiple motifs resembling carbohydrate-recognition domains. J Biol Chem 265: 12156–12162

    PubMed  CAS  Google Scholar 

  • Taylor ME, Bezouska K, Drickamer K (1992) Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem 267: 1719–1726

    PubMed  CAS  Google Scholar 

  • Weis WI, Drickamer K (1996) Structural basis of lectin-carbohydrate-recognition. Annu Rev Biochem 65: 441–473

    Article  PubMed  CAS  Google Scholar 

  • Weis WI, Taylor ME, Drickamer K (1998) The C-type lectin superfamily in the immune system. Immunol Rev 163: 19–34

    Article  PubMed  CAS  Google Scholar 

  • Weis WI, Drickamer K, Hendrickson WA (1992) Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature 360: 127–134

    Article  PubMed  CAS  Google Scholar 

  • Wileman T, Boshans R, Stahl PD (1984) Uptake and transport of mannosylated ligands by alveolar macrophages. Studies on ATP-dependent receptor ligand dissociation. J Biol Chem 260: 7387–7393

    Google Scholar 

  • Wu K, Yuan J, Lasky LA (1996) Characterization of a novel member of the macrophage mannose receptor type C lectin family. J Biol Chem 271: 21323–21330

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, M.E. (2001). Structure and Function of the Macrophage Mannose Receptor. In: Crocker, P.R. (eds) Mammalian Carbohydrate Recognition Systems. Results and Problems in Cell Differentiation, vol 33. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46410-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46410-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53670-0

  • Online ISBN: 978-3-540-46410-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics