Skip to main content

Therapeutic Healing of Radiolesions by Autologous Lipoaspirate Transplant: A Process Mediated by Adipose-Derived Adult Stem Cells

  • Chapter

Abstract

An increasing amount of clinical evidence strongly supports the therapeutic potential of mesenchymal stem cells for ischemic tissue revascularization and restoration of function. Significant clinical results have been obtained by autologous transplantation of bone marrow-derived endothelial and hematopoietic stem cells in ischemic lesions in limbs [1].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tateishi-Yuyama E, Matsubara H, Murohara T et al. (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435

    Article  PubMed  Google Scholar 

  2. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436

    Article  PubMed  CAS  Google Scholar 

  3. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8(9):1004–10

    Article  PubMed  CAS  Google Scholar 

  4. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712

    Article  PubMed  CAS  Google Scholar 

  5. De Ugarte DA, Morizono K, Elbarbary A, et al. (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cell Tissues Organs 174(3):101–9

    Article  Google Scholar 

  6. Ryden M, Dicker A, Gotherstrom C et al. (2003) Functional characterization of human mesenchymal stem cell derived adipocytes. Biochem Biophys Res Commun 311(2):391–397

    Article  PubMed  CAS  Google Scholar 

  7. Gimble J, Guillak F (2003) Adipose-derived adult stem cells: isolation, characterization, differentiation potential. Cytotherapy 5(5):362–9

    Article  PubMed  Google Scholar 

  8. Rehman J, Traktuev D, Li J, et al. (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109(10):1292–1298

    Article  PubMed  Google Scholar 

  9. Cao Y, Sun Z, Liao L, Meng Y, Han Q, Chunhua Zhao R (2005) Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Bioch Biophys Res Comm 332:370–379

    Article  CAS  Google Scholar 

  10. Bentzen SM, Thames HD, Overgaard M (1989) Latent-time estimation for late cutaneous radiation reactions in a single-follow-up clinical study. Radiother Oncol 15(3):267–74

    Article  PubMed  CAS  Google Scholar 

  11. Perbeck LG, Celebioglu F, Danielsson R, Bone B, Aastrup M, Svensson L (2001) Circulation in the breast after radiotherapy and breast conservation. Eur J Surg 167(7):497–500

    Article  PubMed  CAS  Google Scholar 

  12. Pavi JJ, Denekamp J, Letschert J, et al. for the EORTC Late Effects Working Group (1995) Late effects toxicity scoring: The SOMA Scale. Int J Radiat Oncol Biol Phys 31:1043–1047

    Article  Google Scholar 

  13. Pavi JJ, Denekamp J, Letschert J, et al. (1995) LENT-SOMA scales for all anatomic sites. Int J Radiat Oncol Biol Phys 31:1049–1091

    Article  Google Scholar 

  14. Rigotti G, Marchi A (2002) New approach in immediate expander-prosthesis breast reconstruction: 267 consecutive cases using semilunar vs traditional expander, different patterns of skin incisions and purse-string wound closures. Eur J Plast Surg 24:328–332

    Article  Google Scholar 

  15. Scherberich A, Beretz A (2000) Culture of vascular cells in tridimensional (3-D) collagen: a methodological review. Therapie 55(1):35–41. Review.

    PubMed  CAS  Google Scholar 

  16. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  17. Smith JR, Pochampally R, Perry A, Hsu SC, Prockop DJ (2004) Isolation of a highly clonogenic and multipotential subfraction of adult stem cells from bone marrow stroma. Stem Cells 22:823–831

    Article  PubMed  Google Scholar 

  18. Krampera M, Glennie S, Laylor R, Dyson J, Scott D, Simpson E, Dazzi F (2003) Bone marrow mesenchymal stem cells inhibit the response of naïve and memory antigen-specific T cells to their cognate peptide. Blood 101: 3722–3729

    Article  PubMed  CAS  Google Scholar 

  19. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  20. Fleischmajer R, Perlish JS (1980) Capillary alterations in scleroderma. J Am Acad Dermatol 2(2):161–70

    PubMed  CAS  Google Scholar 

  21. Perez CA, Brady LW (eds) (2004) Principles and practice of radiation oncology. Lippincott, Philadelphia

    Google Scholar 

  22. Rudolph R, Vende Berg J, Schneider J, Fischer JC, Poolman WL (1998) Slowed growth of cultured fibroblasts from human radiation wounds. Plastic Reconstr Surg 82(4):669–675

    Article  Google Scholar 

  23. Fulton JE, Parastouk N (2001) Fat grafting. Dermatol Clin 19(3):523–30

    Article  PubMed  CAS  Google Scholar 

  24. Coleman SR (1995) Long-term survival of fat transplants: controlled demonstrations. Aesth Plast Surg 19:421–425

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rigotti, G. et al. (2008). Therapeutic Healing of Radiolesions by Autologous Lipoaspirate Transplant: A Process Mediated by Adipose-Derived Adult Stem Cells. In: Eisenmann-Klein, M., Neuhann-Lorenz, C. (eds) Innovations in Plastic and Aesthetic Surgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46326-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46326-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-46321-4

  • Online ISBN: 978-3-540-46326-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics