Skip to main content

Goal Oriented Error Estimation for the Element Free Galerkin Method

  • Chapter
Meshfree Methods for Partial Differential Equations III

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 57))

  • 1425 Accesses

Abstract

A novel approach for implicit residual-type error estimation in meshfree methods is presented. This allows to compute upper and lower bounds of the error in energy norm with the ultimate goal of obtaining bounds for outputs of interest. The proposed approach precludes the main drawbacks of standard residual type estimators circumventing the need of flux-equilibration and resulting in a simple implementation that avoids integrals on edges/sides of a domain decomposition (mesh). This is especially interesting for mesh-free methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis, John Wiley & Sons, Chichester, 2000.

    MATH  Google Scholar 

  2. R. Becker, Mesh adaptation for Dirichlet flow control via Nitsche's method, Commun. Numer. Methods Eng. 18 (2002), no. 9, 669–680.

    Article  MATH  Google Scholar 

  3. J. Bonet, A. Huerta, and J. Peraire, The effcient computation of bounds for functionals of finite element solutions in large strain elasticity, Comput. Methods Appl. Mech. Engrg. 191 (2002), no. 43, 4807–4826.

    Article  MATH  Google Scholar 

  4. C. Carstensen and S.A. Funken, Fully reliable localized error control in the FEM, SIAM J. Sci. Comput. 21 (1999/00), no. 4, 1465–1484.

    Article  Google Scholar 

  5. H.J. Chung and T. Belytschko, An error estimate in the EFG method, Comput. Mech. 21 (1998), no. 2, 91–100.

    Article  MATH  Google Scholar 

  6. P. Diez, N. Pares, and A. Huerta, Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates, Internat. J. Numer. Methods Engrg. 56 (2003), no. 10, 1465–1488.

    Article  MATH  Google Scholar 

  7. C.A. Duarte and J.T. Oden, An h-p adaptive method using clouds, Comput. Methods Appl. Mech. Eng. 139 (1996), no. 1–4, 237–262.

    Article  MATH  Google Scholar 

  8. S. Fernandez-Mendez, J. Bonet, and A. Huerta, Continuous blending of SPH with finite elements, Comput. Struct. 83 (2005), no. 17–18, 1448–1458.

    Article  Google Scholar 

  9. S. Fernandez-Mendez and A. Huerta, Imposing essential boundary conditions in mesh-free methods, Comput. Methods Appl. Mech. Eng. 193 (2004), no. 12–14, 1257–1275.

    Article  MATH  Google Scholar 

  10. L. Gavete, J.L. Cuesta, and A. Ruiz, A procedure for approximation of the error in the EFG method, Int. J. Numer. Methods Eng. 53 (2002), 667–690.

    Article  Google Scholar 

  11. M. Griebel and M.A. Schweitzer, A Particle-Partition of Unity Method. Part V: Boundary Conditions, Geometric Analysis and Nonlinear Partial Differential Equations, (S. Hildebrandt and H. Karcher, eds.), Springer, 2002, pp. 517–540.

    Google Scholar 

  12. A. Huerta and S. Fernandez-Mendez, Enrichment and coupling of the finite element and meshless methods, Int. J. Numer. Methods Eng. 48 (2000), no. 11, 1615–1636.

    Article  MATH  Google Scholar 

  13. A. Huerta, S. Fernandez-Mendez, and W.K. Liu, A comparison of two formulations to blend finite elements and mesh-free methods, Comput. Methods Appl. Mech. Eng. 193 (2004), no. 12–14, 1105–1117.

    Article  MATH  Google Scholar 

  14. P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20 (1983), no. 3, 485–509.

    Article  MATH  Google Scholar 

  15. W.K. Liu, S. Jun, D.T. Sihling, Y. Chen, and W. Hao, Multiresolution reproducing kernel particle method for computational fluid dynamics, Int. J. Numer. Methods Fluids 24 (1997), 1391–1415.

    Article  MATH  Google Scholar 

  16. L. Machiels, Y. Maday, and A.T. Patera, A “flux-free” nodal Neumann subproblem approach to output bounds for partial differential equations, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 3, 249–254.

    MATH  Google Scholar 

  17. Y. Maday, A.T. Patera, and J. Peraire, A general formulation for a posteriori bounds for output functionals of partial differential equations; application to the eigenvalue problem, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 9, 823–828.

    MATH  Google Scholar 

  18. P. Morin, R.H. Nochetto, and K.G. Siebert, Local problems on stars: a posteriori error estimators, convergence, and performance, Math. Comp. 72 (2003), no. 243, 1067–1097.

    Article  MATH  Google Scholar 

  19. J. Nitsche, über ein variations zur lösung von dirichlet-problemen bei verwendung von teilräumen die keinen randbedingungen unterworfen sind, Abh. Math. Se. Univ. 36 (1970), 9–15.

    Google Scholar 

  20. J.T. Oden and S. Prudhomme, Goal-oriented error estimation and adaptivity for the finite element method, Comput. Math. Appl. 41 (2001), no. 5–6, 735–756.

    Article  MATH  Google Scholar 

  21. M. Paraschivoiu, J. Peraire, and A.T. Patera, A posteriori finite element bounds for linear-functional outputs of elliptic partial differential equations, Comput. Methods Appl. Mech. Eng. 150 (1997), no. 1–4, 289–312.

    Article  MATH  Google Scholar 

  22. N. Pares, J. Bonet, A. Huerta, and J. Peraire, The computation of bounds for linear-functional outputs of weak solutions to the two-dimensional elasticity equations, Comput. Methods Appl. Mech. Eng. 194 (2006), no. 4–6, 406–429.

    Article  Google Scholar 

  23. N. Pares, P. Diez, and A. Huerta, Subdomain-based flux-free a posteriori error estimators, Comput. Methods Appl. Mech. Eng. 195 (2006), no. 4–6, 297–323.

    Article  MATH  Google Scholar 

  24. A.T. Patera and J. Peraire, A general Lagrangian formulation for the computation of a posteriori finite element bounds, Error estimation and adaptive discretization methods in computational fluid dynamics, Lect. Notes Comput. Sci. Eng., vol. 25, Springer, Berlin, 2003, pp. 159–206.

    Google Scholar 

  25. S. Prudhomme and J.T. Oden, On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors, Comput. Methods Appl. Mech. Eng. 176 (1999), no. 1–4, 313–331.

    Article  MATH  Google Scholar 

  26. A.M. Sauer-Budge, J. Bonet, A. Huerta, and J. Peraire, Computing bounds for linear functionals of exact weak solutions to Poisson's equation, SIAM J. Numer. Anal. 42 (2004), no. 4, 1610–1630.

    Article  MATH  Google Scholar 

  27. R. Stenberg, On some techniques for approximating boundary conditions in the finite element method, J. Comput. Appl. Math. 63 (1995), no. 1–3, 139–148.

    Article  MATH  Google Scholar 

  28. G.J. Wagner and W.K. Liu, Application of essential boundary conditions in mesh-free methods: a corrected collocation method, Int. J. Numer. Methods Eng. 47 (2000), no. 8, 1367–1379.

    Article  MATH  Google Scholar 

  29. Z.C. Xuan, N. Pares, and J. Peraire, Computing upper and lower bounds for the J-integral in two-dimensional linear elasticity, Comput. Methods Appl. Mech. Eng. 195 (2006), no. 4–6, 430–443.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Vidal, Y., Huerta, A. (2007). Goal Oriented Error Estimation for the Element Free Galerkin Method. In: Griebel, M., Schweitzer, M.A. (eds) Meshfree Methods for Partial Differential Equations III. Lecture Notes in Computational Science and Engineering, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46222-4_16

Download citation

Publish with us

Policies and ethics