Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 61))

Abstract

The lowest intensities of (sub)mm laser emission usually considered to be useful are at the microwatt level, and such emission can easily be detected with a Golay cell [4.1] or pyroelectric detector [4.2], especially when chopping and synchronous detection is used. These devices were not designed for such long wavelengths, however, and in particular they have very small entrance apertures through which (sub)mm radiation couples in a fairly unpredictable way. The Golay cell is furthermore totally saturated by radiation at the level of a few tens of microwatts, if properly coupled. This means that such detectors are unsuitable for absolute power measurement, unless considerable effort is made to calibrate them. The majority of reports of new (sub)mm laser lines therefore either give no indication of strengths, or else give relative indications such as “very strong”, “medium”, “very weak”, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The Golay cell is made by Unicam Instruments Ltd., England; the device was first described by M.J.E. Golay: Rev. Sci. Instrum. 18, 357 (1947)

    Google Scholar 

  2. A major supplier is Molectron Corporation, U.S.A.; a discussion is given by C.B. Roundy and R.L. Byer: J. Appl. Phys. 44, 929 (1973)

    Google Scholar 

  3. M.S. Tobin: Proc. IEEE 73, 61–85 (1985)

    Article  ADS  Google Scholar 

  4. K.J. Siemsen, J. Reid, D.J. Danagher: Appl. Opt. 25, 86–91 (1986)

    Article  ADS  Google Scholar 

  5. R.A. Wood, A. Vass, C.R. Pidgeon, M.J. Colles, B. Norris: Opt. Commun. 33, 89–90 (1980)

    Article  ADS  Google Scholar 

  6. F. Strumia, N. Ioli, A. Moretti: Physics of New Laser Sources, ed. by N.B. Abraham, F.T. Arecchi, A. Mooradian, A. Sona, NATO ASI Series Vol. 132 ( Plenum, New York 1985 )

    Google Scholar 

  7. D.T. Hodges, F.B. Foote, R.D. Reel: Appl. Phys. Lett. 29, 662–664 (1976)

    Article  ADS  Google Scholar 

  8. B.W. Davis, A. Vass, C.R. Pidgeon, G.R. Allan: Opt. Commun. 37, 303–305 (1981)

    Article  ADS  Google Scholar 

  9. A. Tanaka, A. Tanimoto, N. Murata, M. Yamanaka, H. Yoshinaga: Japan. J. Appl. Phys. 13, 1491–1492 (1974)

    Article  ADS  Google Scholar 

  10. E.J. Danielewicz: “The Optically Pumped Difluoromethane Far-Infrared Laser”, in Reviews of Infrared and Millimeter Waves, Vol. 2, ed. by K.J. Button, M. Inguscio, F. Strumia (Plenum, New York 1984 )

    Google Scholar 

  11. C.O. Weiss, M. Fourrier, C. Gastaud, M. Redon: “Optically Pumped Far-Infrared Ammonia Lasers”, in Reviews of Infrared and Millimeter Waves, Vol. 2, ed. by K.J. Button, M. Inguscio, F. Strumia (Plenum, New York 1984 )

    Google Scholar 

  12. E.J. Danielewicz, C.O. Weiss: Opt. Commun. 27, 98–100 (1978)

    Article  ADS  Google Scholar 

  13. J. Farhoomand, H.M. Pickett: Int. J. Infrared Mmwaves 8, 441–447 (1987)

    Article  ADS  Google Scholar 

  14. E.J. Danielewicz, T.A. Galantowicz, F.B. Foote, R.D. Reel, D.T. Hodges: Opt. Lett. 4, 280–282 (1979)

    Article  ADS  Google Scholar 

  15. A.R. Calloway, E.J. Danielewicz: IEEE J. QE-17, 579–581 (1981)

    Google Scholar 

  16. S.F. Dyubko, V.A. Svich, L.D. Fesenko: JETP Lett. 16, No. 11, 418–419 (1972)

    Google Scholar 

  17. A.R. Calloway, E.J. Danielewicz: Int. J. Infrared Mmwaves 2, 933–942 (1981)

    Article  ADS  Google Scholar 

  18. T. Lehecka: U.C.L.A.: private communication (1988)

    Google Scholar 

  19. E.C.C. Vasconcellos, A. Scalabrin, F.R. Petersen, K.M. Evenson: Int. J. Infrared Mmwaves 2, 533–539 (1981)

    Article  ADS  Google Scholar 

  20. K.B. Amos, J.A. Davis: IEEE J. QE-16, 574–575 (1980)

    Google Scholar 

  21. M.S. Tobin, J.P. Sattler, T.W. Daley: IEEE J. QE-18, 79–86(1982)

    Google Scholar 

  22. J-C. Deroche, G. Graner: “FIR Laser Lines Optically Pumped in Methyl Chloride, CH3 35C1 and CH3 37C1”, in Reviews of Infrared and Millimeter Waves, Vol. 2, ed. by K.J. Button, M. Inguscio, F. Strumia (Plenum, New York 1984 )

    Google Scholar 

  23. F.K. Kneubühl, Ch. Sturzenegger: “Electrically Excited Submillimeter-Wave Lasers”, in Infrared and Millimeter Waves 3, ( Academic, New York 1980 )

    Google Scholar 

  24. S.F. Dyubko, V.A. Svich, L.D. Fesenko: Soy. Phys. Tech. Phys. 20, 1536–1538 (1976)

    Google Scholar 

  25. T. Lehecka, R. Savage, R. Dworak, W.A. Peebles, N.C. Luhmann, Jr., A. Semet: Rev. Sci. Instrum. 57, 1986–1988 (1986)

    Article  ADS  Google Scholar 

  26. P.A. Stimson, B.W. James, I.S. Falconer, L.B. Whitbourn, J.C. Macfarlane: Appl. Phys. Lett. 50, 786–788 (1987)

    Article  ADS  Google Scholar 

  27. L.B. Whitbourn, J.C. Macfarlane, P.A. Stimson, B.W. James, I.S. Falconer: Infrared Physics 28, 7–20 (1988) (see note 19 in Table 4. 1 )

    Google Scholar 

  28. G. Graner, J-C. Deroche: “Far-Infrared Laser Lines Obtained by Optical Pumping of the CD3C1 molecule”, in Reviews of Infrared and Millimeter Waves, Vol. 2, ed. by K.J. Button, M. Inguscio, F. Strumia (Plenum, New York 1984 )

    Google Scholar 

  29. G. Duxbury: “Submillimeter Laser Lines in 1,1 Difluoroethylene, CF2CH2”, in Reviews of Infrared and Millimeter Waves, Vol. 2, ed. by K.J. Button, M. Inguscio, F. Strumia (Plenum, New York 1984 )

    Google Scholar 

  30. D.T. Hodges, F.B. Foote, R.D. Reel: IEEE J. QE-13, 491–494 (1977)

    Google Scholar 

  31. F.B. Foote, D.T. Hodges, H.B. Dyson: Int. J. Infrared Mmwaves 2, 773–782 (1981)

    Article  ADS  Google Scholar 

  32. R.J. Wagner, A.J. Zelano, L.H. Ngai: Opt. Commun. 8, 46–47 (1973)

    Article  ADS  Google Scholar 

  33. H. Herman, B.E. Prewer: “Laser Sources in the 140 to 7500 GHz Frequency Range”, in Proceedings, Military Microwaves ‘82, London, (1982)

    Google Scholar 

  34. Scientech, 5649 Arapahoe Avenue, Boulder Colorado 80303, U.S.A.

    Google Scholar 

  35. Laser Instrumentation Ltd., Unit 4 Bear Court, Basingstoke Hamps. RG24 OQT, England

    Google Scholar 

  36. B. Vowinkel, H.P. Miser: Int. J. Infrared Mmwaves 3, 471–487 (1982)

    Article  ADS  Google Scholar 

  37. T.G. Blaney, D.G. Moss: NPL Report DES 68 (1980). National Physical Laboratory, Teddington, England

    Google Scholar 

  38. K + C Engineering, Lenaustrasse 38, D-6000 Frankfurt 1, West Germany; Application Note 834 describes calibration to submm wavelengths

    Google Scholar 

  39. K.M. Evenson, D.A. Jennings, F.R. Petersen, J.A. Mucha, J.J. Jiménez, R.M. Charlton, C.J. Howard: IEEE J. QE-13, 442–444 (1977)

    Google Scholar 

  40. H.J.J. Seguin, V.A. Seguin, A.K. Nath, J. Radzion: Rev. Sci. Instrum. 57, 185–190 (1986)

    Article  ADS  Google Scholar 

  41. A. Scalabrin, K.M. Evenson: Opt. Lett. 4, 277–279 (1979)

    Article  ADS  Google Scholar 

  42. G. Carelli, N. Ioli, A. Moretti, D. Pereira, F. Strumia, R. Densing: Appl. Phys. B 45, 97–100 (1988)

    Article  ADS  Google Scholar 

  43. P. Wazen, J.-M. Lourtioz: Appl. Phys. B 32, 105–111 (1983)

    Article  ADS  Google Scholar 

  44. K. Benzerhouni, F. Meyer, J.M. Lourtioz: Infrared Physics 26, 377–380 (1986)

    Article  ADS  Google Scholar 

  45. B.W. James, University of Sydney: private communication (1988), and L.B. Whitbourn, J.C. Macfarlane, P.A. Stimson, B.W. James, I.S. Falconer: Infrared Physics 28 (5), 1 (1988)

    MATH  Google Scholar 

  46. P. Belland, D. Véron: IEEE J. QE-16, 885–890 (1980)

    Google Scholar 

  47. B.W. Davis, A. Vass: Int. J. Infrared Mmwaves 9, 279–293 (1988)

    Article  ADS  Google Scholar 

  48. N. Ioli, A. Moretti, F. Strumia: Appl. Phys. B 48, 305–309 (1989). Note error in frequency given for this line.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Douglas, N.G. (1989). Power Measurements. In: Millimetre and Submillimetre Wavelength Lasers. Springer Series in Optical Sciences, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46095-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46095-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14492-3

  • Online ISBN: 978-3-540-46095-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics