Asplund spaces, the RNP and perturbed optimization

Part of the Lecture Notes in Mathematics book series (LNM, volume 1364)


In this section we are going to look at a duality relationship between Asplund spaces and spaces with the Radon-Nikodým property (RNP). Roughly speaking, a Banach space E or, more generally, a closed convex subset C of E, is said to have the Radon-Nikodým property if the classical Radon-Nikodým theorem (on the representation of absolutely continuous measures in terms of integrals) is valid for vector-valued measures whose “average range” is contained in C. This property has been characterized in purely geometrical terms (which is the basis of the definition we use below). For the extraordinarily wide range of connections between the RNP and various parts of integration theory, operator theory and convexity, one should read the 1977 survey by Diestel and Uhl [Di-U] and, for more recent results (1983) the comprehensive lecture notes by Bourgin [Bou].


Banach Space Nonempty Subset Compact Convex Subset Lower Semicontinuous Function Closed Convex Hull 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Personalised recommendations