Skip to main content

Resonant Ponderomotive Effects

  • Chapter
  • First Online:
High Power Laser-Matter Interaction

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 238))

  • 2658 Accesses

Abstract

Stimulated scattering of an electromagnetic wave from electron density fluctuations induced by acoustic and Langmuir waves plays an important role in laser generated plasmas for understanding its dynamics in detail, fast electron generation and plasma heating, as well as in laser plasma applications. We show that these so-called parametric effects or instabilities, like stimulated Brillouin and Raman scattering, are all resonantly driven by light or wave pressure. In the system co-moving with the electron density disturbance the incident pump wave is partially reflected from the inhomogeneities of the refractive index and causes a standing amplitude modulation by superposition of the reflected wave with the pump wave. We show that the phase of the reflected wave with respect to the density modulation is such that the ponderomotive force resulting from the amplitude modulation amplifies the latter which, in turn, leads to increased reflection and finally, by ponderomotive feedback, to exponential growth of the electron density fluctuation and to stimulated scattering of the pump wave. Since in first approximation the longitudinal electric wave obeys a wave equation of the same structure as the transverse electromagnetic wave, and the same is true for the ponderomotive force, both types of waves are subject, damping rates permitting, to the same parametric instabilities. For the physical insight into the dynamics of unstable growth transformation to the reference system co-moving with the refractive index modulation is advantageous because there the modulation is static and the ponderomotive force is secular; for the explicit calculation of growth rates however, the lab frame is generally more appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Glenzer, S.H., Rozmus, W., McGowan, B.J., et al.: Phys. Rev. Lett. 82, 97 (1999)

    Article  ADS  Google Scholar 

  2. Glenzer, S.H., Redmer, R.: Rev. Mod. Phys. 81, 1625 (2009)

    Article  ADS  Google Scholar 

  3. Lee, K.J., Neumayer, P., Castor, J., et al.: Phys. Rev. Lett. 102, 115001 (2009)

    Article  ADS  Google Scholar 

  4. Baldis, H.A., Campbell, E.M., Kruer, W.L.: In: Rosenbluth, M.N., Sagdeev, R.Z. (eds.) Laser–Plasma Interactions, Handbook of Plasma Physics, vol. 3, pp. 383–396. North-Holland, Amsterdam (1991)

    Google Scholar 

  5. John Sheffield: Plasma Scattering of Electromagnetic Radiation, Acad. Press. New York (1975)

    Google Scholar 

  6. Boyd, T.J.M., Sanderson, J.J.: The Physics of Plasmas, Cambridge Univ. Press. Cambridge (2003)

    Book  MATH  Google Scholar 

  7. Chihara, J.: J. Phys.: Metal Physics 17, 295 (1987); J. Phys.: Condensed Matter 12, 231 (2000)

    Article  ADS  Google Scholar 

  8. Fortmann, C., Redmer, R., Reinholtz, H., Röpke, G., Wierling, A., Rozmuws, W.: High Energy Densitity Physics 2, 57 (2006)

    Article  ADS  Google Scholar 

  9. Fortmann, C., Thiele, R., Fäustlin, R.R., Bornath, Th., et al.: High Energy Density Physics 5, 208 (2009)

    Article  ADS  Google Scholar 

  10. Brillouin, L.: La theorie des solides er les quanta (1928), and Wave propagation in periodic structures (1940). Experimental verification of the effect by Gross in 1930 (Léon Brillouin predicted the effect in 1922)

    Google Scholar 

  11. Landsberg, G., Mandelstam, L.: Eine neue Erscheinung bei der Lichtstreuung in Metallen. A new phenomenon in the light scattering from metals), Die Naturwissenschaften 16, 557 (1928)

    Article  Google Scholar 

  12. Handke, J., Rizvi, S.A.H., Kronast, B.: Appl. Phys. 25, 109 (1981)

    Article  ADS  Google Scholar 

  13. Gellert, B., Kronast, B.: Appl. Phys. B 32, 175 (1983)

    Article  ADS  Google Scholar 

  14. Baldis, H., et al.: Phys. Fluids B 5, 3319 (1993)

    Article  ADS  Google Scholar 

  15. Kline, J.L., J. Phys.: Conf. Ser. 112, 022042 (2008)

    Article  ADS  Google Scholar 

  16. Hüller, S., Masson-Laborde, P.E., Pesme, D., Casanova, M., Detering, F., Maximov, A.: Phys. Plasmas 13, 022703 (2006)

    Article  ADS  Google Scholar 

  17. Pesme, D. In: Dautray, R., Watteau, J.P. (eds.) La fusion thermonucléaire inertielle par laser (1993)

    Google Scholar 

  18. Johnston, T.W., et al.: Plasma Phys. Contr. Fusion 27, 473 (1985)

    Article  ADS  Google Scholar 

  19. Kadomtsev, B.B.: Plasma Turbulence. Acad. Press, New York (1965)

    Google Scholar 

  20. Davidson, R.C., Goldman, R.: Phys. Rev. Lett. 21, 1671 (1968)

    Article  ADS  MATH  Google Scholar 

  21. Depierreux, S., et al.: Phys. Rev. Lett. 84, 2869 (2000)

    Article  ADS  Google Scholar 

  22. Fouquet, Th., Pesme, D.: Phys. Rev. Lett. 100, 055006 (2008)

    Article  ADS  Google Scholar 

  23. Goldman, M.V., DuBois, D.F.: Phys. Fluids 8, 1404 (1965)

    Article  ADS  Google Scholar 

  24. Forslund, D.W., Kindel, J.M., Lindman, E.L.: Phys. Fluids 18, 1002 (1975)

    Article  ADS  Google Scholar 

  25. Strozzi, D.J.: Vlasov simulations of kinetic enhancement of Raman backscatter in laser fusion plasmas. Massachusetts Institute of Technology, Thesis (2006)

    Google Scholar 

  26. Vu, H.X., DuBois, D.F., Bezzerides, B.: Phys. Plasmas 14, 012702 (2007)

    Article  ADS  Google Scholar 

  27. Yin, L., Daughton, W., Albright, B.J., et al.: Phys. Plasmas 13, 072701 (2006)

    Article  ADS  Google Scholar 

  28. Baldis, H.A., Campbell, E.M., Kruer, W.L.: In: Rosenbluth, M.N., Sagdeev, R.Z. (eds.) Laser–Plasma Interactions, Handbook of Plasma Physics, vol. 3, pp. 397–408. North-Holland, Amsterdam (1991)

    Google Scholar 

  29. Silin, V.P.: Sov. Phys. JETP 21, 1127 (1965)

    ADS  Google Scholar 

  30. Nishikawa, K.: J. Phys. Soc. Japan 24, 1152 (1968)

    Article  ADS  Google Scholar 

  31. Mulser, P., Giulietti, A.: Europhys. Lett. 12, 335 (1990)

    Article  ADS  Google Scholar 

  32. Kruer, W.L.: The Physics of Laser Plasma Interactions, p. 91. Addison-Wesley Publ., Redwood City, CA. (1988)

    Google Scholar 

  33. Hüller, S., Mulser, P., Rubenchik, A.M.: Phys. Fluids B 3, 3339 (1991)

    Article  ADS  Google Scholar 

  34. Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S., Rosenbluth, M.N.: Phys. Fluids 17, 778 (1974)

    Article  ADS  Google Scholar 

  35. Berger, R.L., et al.: Phys. Fluids B 5, 2243 (1993)

    Article  ADS  Google Scholar 

  36. Cassedy, E.S., Mulser, P.: Phys. Rev. A 10, 2349 (1974)

    Article  ADS  Google Scholar 

  37. Eidmann, K., Sigel, R.: In: Schwarz, H.J., Hora, H. (eds.) Laser Interaction and Related Plasma Phenomena, vol. 3B, p. 667. Plenum, New York (1974)

    Chapter  Google Scholar 

  38. Clayton, C.E., Joshi, C., Chen, F.F.: Phys. Rev. Lett. 51, 1656 (1983)

    Article  ADS  Google Scholar 

  39. Bernard, J.E., Meyer, J.: Phys. Fluids 29, 2313 (1986)

    Article  ADS  Google Scholar 

  40. Mostovych, A.M., et al.: Phys. Rev. Lett. 59, 1193 (1987)

    Article  ADS  Google Scholar 

  41. Hüller, S., Masson, P.E.-Laborde, Pesme, D., Labaune, C., Bandulet, H.: J. Phys.: Conf. Series 112, 022031 (2008)

    Article  ADS  Google Scholar 

  42. Tikhonchuk, V.T., Hüller, S., Ph. Mounaix: Phys. Plasmas 4, 4369 (1997)

    Article  ADS  Google Scholar 

  43. Pesme, D., Rozmus, W., Tikhonchuk, V.T., Maximov, A., Ourdev, I., Still, C.H.: Phys. Rev. Lett. 84, 278 (2000)

    Article  ADS  Google Scholar 

  44. Michel, P., Labaune, C.: Phys. Fluids 10, 3545 (2003)

    Google Scholar 

  45. Masson-Laborde, P.E., Hüller, S., Pesme, D., Casanova, M., Loiseau, P.: J. Phys. IV France 133, 247 (2006)

    Article  Google Scholar 

  46. Drake, R.P., Turner, R.E., Lasinski, B.F., et al.: Phys. Rev. Lett. 40, 3219 (1989)

    ADS  Google Scholar 

  47. Strozzi, D.J., Shoucri, M.M., Bers, A., Williams, E.A., Langdon, A.B.: J. Plasma Phys. 72, 1299 (2006)

    Article  ADS  Google Scholar 

  48. Ze, F., et al.: Comm. Plasma Phys. Contr. Fusion 10, 33 (1986)

    Google Scholar 

  49. Mourenas, D., Divol, L., Casanova, M., Rousseaux, C.: Phys. Plasmas 8, 557 (2001)

    Article  ADS  Google Scholar 

  50. Stoeckl, C., Baldis, H., et al.: Phys. Rev. Lett. 90, 235002 (2003)

    Article  ADS  Google Scholar 

  51. Sheng, Z.-M., Li, Y.T., Zhang, J., Veisz, L.: IEEE Transactions on Plasma Sci. 33, 486 (2005)

    Article  ADS  Google Scholar 

  52. Sanmartin, J.R.: Phys. Fluids 13, 1533 (1970)

    Article  ADS  Google Scholar 

  53. Piliya, A.D.: Phenomena in Ionized Gases, p. 287. Proc. 11th Int. Conf., Oxford (1971)

    Google Scholar 

  54. Rosenbluth, M.N.: Phys. Rev. Lett. 29, 565 (1972)

    Article  ADS  Google Scholar 

  55. Liu, C.S.: In: Simon, A., Thompson, W.B. (eds.) Advances in Plasma Physics, vol. 6, pp.121–177. John Wiley & Sons, New York (1976)

    Google Scholar 

  56. Babonneau, D.: Instabilites Parametriques en Plasma Inhomogene, Centre d’;Etudes de Limeil B.P.no 27, Note C.E.A. no 1749 (June 26 1974)

    Google Scholar 

  57. Manley, J.M., Rowe, H.E.: Proc. Inst. Radio Engrs. 44, 904 (1956)

    Article  Google Scholar 

  58. Brown, J.: Electron. Lett. 1, 23 (1965)

    Article  Google Scholar 

  59. Brizard, A.J., Kaufman, A.N.: Phys. Rev. Lett. 74, 4567 (1995)

    Article  ADS  Google Scholar 

  60. Salimullah, M., Hassan, M.H.A.: Phys. Rev. A 41, 6963 (1990)

    Article  ADS  Google Scholar 

  61. Guerin, S., Laval, G., Mora, P., Adam, J.C., Heron, A.: Phys. Plasmas 2, 2807 (1995)

    Article  ADS  Google Scholar 

  62. Mahmoud, S.T., Sharma, R.P.: Phys. Plasmas 8, 3419 (2001)

    Article  ADS  Google Scholar 

  63. Mahmoud, S.T.: Phys. Scr. 76, 259 (2007)

    Article  ADS  MATH  Google Scholar 

  64. Bers, A., Shkarowski, I.P., Shoucri, M.: Phys. Plasmas 16, 022104 (2009)

    Article  ADS  Google Scholar 

  65. Shvets, G., Fish, N.J., Rax, J.M.: Phys. Plasmas 3, 1109 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  66. Steffen Hain: Ausbreitung intensiver Laserstrahlung in Materie. Propagation of intense laser radiation in matter), PhD thesis, Tech. Univ. Darmstadt; GCAVerlag. Herdecke (1999), pp. 50–62, in German

    Google Scholar 

  67. Kaw, P., Dawson, J.: Phys. Fluids 13, 472 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mulser .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mulser, P., Bauer, D. (2010). Resonant Ponderomotive Effects. In: High Power Laser-Matter Interaction. Springer Tracts in Modern Physics, vol 238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46065-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46065-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50669-0

  • Online ISBN: 978-3-540-46065-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics