Skip to main content

The Laser Plasma: Basic Phenomena and Laws

  • Chapter
  • First Online:
High Power Laser-Matter Interaction

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 238))

Abstract

High power lasers when focused onto matter lead to extremely rapid ionization by direct photoeffect or, depending on wavelength and material, by multiphoton processes. When a sufficient number of free electrons is created the formation of a dense, highly ionized plasma is more efficiently continued by electron–neutrals and electron–ion impact ionization. In view of many important applications the generation of a homogeneous high density and, at the same time, very hot plasma would be most desirable. Unfortunately, at present high power lasers operate in the near infrared domain. As a consequence, direct interaction of the laser beam with matter is possible only below a limiting density, the so-called critical density which, at nonrelativistic intensities, is typically a hundred times lower than solid density. Only when the oscillatory velocity of the electrons becomes relativistic at laser intensities beyond 1018 Wcm-2 direct interaction with higher densities takes place. It is due to this cut-off that the plasma production process becomes a very dynamic interplay between laser beam stopping and plasma expansion and makes the plasmas created by lasers from overdense matter very inhomogeneous and short-living. Within certain limits efficient energy transfer from the laser to overdense plasma regions is made possible by electron thermal conduction. As there are physical limits inherent in this process also energy transfer to more dense matter is accomplished by shock wave heating and UV and X radiation from the moderately dense plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raizer, Yu.P.: Laser-Induced Discharge Phenomena. Consultants Bureau, New York (1977)

    Google Scholar 

  2. Shen, Y.R.: The Principles of Nonlinear Optics, Chap. 27. John Wiley & Sons, New York (1984)

    Google Scholar 

  3. Turcu, I.C.E., Gower, M.C., Huntington, P.: Opt. Comm. 134, 66 (1997)

    ADS  Google Scholar 

  4. Evrastov, E.V., et al.: Sov. J. Quant. Electron. 18, 354 (1988)

    ADS  Google Scholar 

  5. Poprawe, R., Beyer, E., Herziger, G.: Proc. Conf. Gas Flow and Chem. Lasers, Oxford (1984)

    Google Scholar 

  6. Rosen, D.I., Weyl, G.: J. Phys. D: Appl. Phys. 20, 1264 (1987)

    ADS  Google Scholar 

  7. Ageev, V.P., Gorbunov, A.A., Danilov, V.P., Konov, V.I., Nikitin, P.I., Prokhorov, A.M.: Sov. J. Quant. Electron. 13, 1595 (1983)

    ADS  Google Scholar 

  8. Kovalev, A.S., et al.: Sov. J. Quant. Electron. 15, 468 (1985)

    MathSciNet  ADS  Google Scholar 

  9. Storm, E.: J. Fusion Energy 7, 131 (1988)

    Google Scholar 

  10. Storm, E., Lindl, J.D., Campbell, E.M., Bernat, T.P., Coleman, L.W., Emmett, J.L., Hogan, W.J., Hunt, J.T., Krupke, W.F., Lowdermilk, W.H.: Progress in Laboratory High Gain ICF: Prospects for the Future LLNL Progress Report (1988), published in J. Fusion Energy (1990)

    Google Scholar 

  11. Lindl, J.: Phys. Plasmas 2, 3933 (1995)

    ADS  Google Scholar 

  12. Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion. Oxford University Press, Oxford (2004)

    Google Scholar 

  13. Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodward, J., Camppbell, E.M., Perry, M.D.: Phys. Plasmas 1, 1626 (1994)

    ADS  Google Scholar 

  14. Hain, S., Mulser, P.: Phys. Rev. Lett. 86, 1015 (2001)

    ADS  Google Scholar 

  15. Brabec, T., Krausz, F.: Rev. Mod. Phys. 72, 545 (2000); Wittmann, T., et al.: Nature Physics 5, 357 (2009)

    ADS  Google Scholar 

  16. Brederlow, G., Fill, E., Witte, K.J.: The High-Power Iodine Laser. Springer, Berlin (1983)

    Google Scholar 

  17. Johnson, Th.H.: Proc. IEEE 72, 548 (1984)

    ADS  Google Scholar 

  18. Loudon, R.: The Quantum Theory of Light. Clarendon, Oxford (1986)

    Google Scholar 

  19. Meystre, P., Sargent, M. III: Elements of Quantum Optics. Springer, Berlin (1990)

    Google Scholar 

  20. Varcoe, B.T.H., Brattke, S., Weidinger, M., Walther, H.: Nature 403, 743 (2000)

    ADS  Google Scholar 

  21. Lvovsky, A.I., Hansen, H., Aichele, T., Benson, O., Mlynek, J., Schiller, S.: Phys. Rev. Lett. 87, 050402 (2001)

    ADS  Google Scholar 

  22. Silin, V.P., Uryupin, S.A.: Zh. Exp. Theor. Fiz. 81, 910 (1981); Sov. Phys. JETP 54, 485 (1981)

    ADS  Google Scholar 

  23. Mulser, P., Uryupin, S., Sauerbrey, R., Wellegehausen, B.: Phys. Rev. A 48, 4547 (1993)

    ADS  Google Scholar 

  24. Lotz, W.: Z. Physik 216, 241 (1968); Z. Physik 220, 466 (1969)

    ADS  Google Scholar 

  25. Janev, R.K., Presnyakov, L.P., Shevelko, V.P.: Physics of Highly Charged Ions. Springer, Berlin (1985)

    Google Scholar 

  26. Kanapathipillai, M., Mulser, P., et al.: Phys. Plasmas 11, 3911 (2004)

    ADS  Google Scholar 

  27. Pert, G.J.: J. Phys. B: At. Mol. Phys. 12, 2755 (1979)

    ADS  Google Scholar 

  28. Shkarofsky, I.P., Johnston, T.W., Bachynski, M.P.: The Particle Kinetics of Plasmas. Addison-Wesley, Reading, MA (1966)

    Google Scholar 

  29. Faisal, F.H.M.: Theory of Multiphoton Processes. Plenum Press, New York (1987)

    Google Scholar 

  30. Chin, S.L., Lambropoulos, P.: Multiphoton Ionisation of Atoms. Acad. Press, New York (1984)

    Google Scholar 

  31. Lambropoulos, P., Tang, X.: J. Opt. Soc. Am. B 4, 821 (1987)

    ADS  Google Scholar 

  32. Voronov, G.S., Delone, N.B.: Sov. Phys. JETP 23, 54 (1966)

    ADS  Google Scholar 

  33. Perry, M.D., Szoke, A., Landen, O.L., Campbell, E.M.: Phys. Rev. Lett. 60, 1270 (1988)

    ADS  Google Scholar 

  34. Yergeau, F., Chin, S.L., Lavigne, P.: J. Phys. B: At. Mol. Phys. 20, 723 (1987)

    ADS  Google Scholar 

  35. L’Huillier, A., Lompr’e, L.A., Mainfray, G., Manus, C.: J. Phys. B: At. Mol. Phys. 16, 1363 (1983)

    ADS  Google Scholar 

  36. Poprawe, R., Herziger, G.: IEEE J. Quant. Electron. 22, 590 (1986)

    ADS  Google Scholar 

  37. Bekefi, G.: Principles of Laser Plasmas. John Wiley & Sons, New York (1976)

    Google Scholar 

  38. Clarke, P., et al.: Appl. Phys. A 69, 117 (1999)

    ADS  Google Scholar 

  39. Izumida, S., Onishi, K., Saito, M.: Jap. J. Appl. Phys. 1 37, 2039 (1997)

    Google Scholar 

  40. Koldunov, M.F., Manenkov, A.A., Pokotilo, I.L.: J. Opt. Technol. 63, 128 (1996)

    ADS  Google Scholar 

  41. Hosada, M., et al.: Jap. J. Appl. Phys. 1 38, 3567 (1999)

    Google Scholar 

  42. Fedonov, A.V., et al.: Appl. Surf. Sci. 197, 45 (2002)

    ADS  Google Scholar 

  43. Balescu, R.: Equilibrium and Nonequilibrium Statistical Mechanics. Wiley-Interscience, New York (1975)

    Google Scholar 

  44. Mulser, P.: Z. Naturforsch. 25a, 282 (1970)

    ADS  Google Scholar 

  45. Braginskii, S.I.: Transport Processes in Plasmas. In: Leontovich, M.A. (ed) Reviews of Plasma Physics, Vol. 1. Consultants Bureau, New York (1966)

    Google Scholar 

  46. Weng, S.M., et al.: Phys. Rev. Lett. 100, 185001 (2008)

    ADS  Google Scholar 

  47. Chorin, A.J., Marsden, J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, Berlin (1979)

    Google Scholar 

  48. Kidder, R.E.: Nucl. Fusion 16, 405 (1976)

    ADS  Google Scholar 

  49. Maaswinkel, A.G.M., Eidmann, K., Sigel, R., Witkowski, S.: Opt. Comm. 51, 255 (1984)

    ADS  Google Scholar 

  50. Mulser, P., Kärcher, B.: Phys. Lett. A 126, 383 (1988)

    ADS  Google Scholar 

  51. Mulser, P.: Z. Naturforsch. 42a, 1147 (1987)

    Google Scholar 

  52. Davidson, R.C.: Methods in Nonlinear Plasma Theory. Acad. Press, New York (1972)

    Google Scholar 

  53. Derfler, H., Simonen, T.: J. Appl. Phys. 38, 5018 (1967)

    ADS  Google Scholar 

  54. Dawson, J.M.: Phys. Fluids 4, 869 (1961)

    ADS  Google Scholar 

  55. Chen, F.F.: Plasma Physics and Controlled Fusion, Vol. 1. Plenum Press, New York (1984)

    Google Scholar 

  56. Hahn, E.L.: Phys. Rev. 80, 580 (1950)

    ADS  MATH  Google Scholar 

  57. Carr, H.Y., Purcell, E.M.: Phys. Rev. 94, 630 (1954)

    ADS  Google Scholar 

  58. Feynman, R.P., Vernon, F.L., Hellwarth, R.W.: J. Appl. Phys. 28, 49 (1957)

    ADS  Google Scholar 

  59. Rayleigh, L.: Phil. Mag. 34, 59 (1892); Proc. Royal Soc. L XIV, 68 (1899)

    MATH  Google Scholar 

  60. Rayleigh, L.: Nature 95, 66, 591, 644 (1915)

    ADS  Google Scholar 

  61. Buckingham, E.: Phys. Rev. 4, 345 (1914)

    ADS  Google Scholar 

  62. Sedov, L.I.: Similarity and Dimensional Methods. Acad. Press, New York (1959)

    Google Scholar 

  63. De Izarra, C., Caillard, J., Valle, O.: Mod. Phys. Lett. B 16, 69 (2002)

    ADS  Google Scholar 

  64. Zhi-yuan, Z., et al.: Optoelectronics Lett. 3, 394 (2007)

    ADS  Google Scholar 

  65. Eliezer, S.: The Interaction of High-Power Lasers with Plasmas, Chap. 11. IOP Publ., Bristol (2002)

    Google Scholar 

  66. Kull, H.-J.: Phys. Rep. 206, 197 (1991)

    ADS  Google Scholar 

  67. Gurevich, V.A., Pariiskaya, L.V., Pitaevskii, L.P.: Sov. Phys. JETP 22, 449 (1966); Gurevich, V.A., Pariiskaya, L.V., Pitaevskii, L.P.: Sov. Phys. JETP 36, 449 (1973)

    ADS  Google Scholar 

  68. Mora, P.: Phys. Rev. Lett. 90, 185002 (2003)

    ADS  Google Scholar 

  69. Mora, P.: Phys. Rev. E 72, 056401 (2005)

    ADS  Google Scholar 

  70. Murakami, M., Basko, M.M.: Phys. Plasmas 13, 012105 (2006)

    ADS  Google Scholar 

  71. Basko, M.M.: Eur. Phys. J. D 41, 641 (2007)

    ADS  Google Scholar 

  72. Sentoku, Y., Cowan, T.E., Kemp, A., Ruhl, H.: Phys. Plasmas 10, 2009 (2003)

    ADS  Google Scholar 

  73. Murakami, M., Mima, K.: Phys. Plasmas 16, 103108 (2009)

    ADS  Google Scholar 

  74. Murakami, M., Tanaka, M.: Phys. Plasmas 15, 082702 (2008)

    ADS  Google Scholar 

  75. Zeldovich, Ya.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Acad. Press, New York (1967)

    Google Scholar 

  76. Huntley, H.E.: Dimensional Analysis. McDonald, London (1953)

    Google Scholar 

  77. Bridgman, P.W.: Dimensional Analysis revised ed. (Yale Univ. Press, New Haven (1931)

    Google Scholar 

  78. Duncan, W.J.: Physical Similarity and Dimensional Analysis. Arnold, London (1953)

    Google Scholar 

  79. Birkhoff, G.: Hydrodynamics; A Study in Logic, Fact and Similitude. Princeton Univ. Press, Princeton, NJ (1960)

    Google Scholar 

  80. Langhaar, H.L.: Dimensional Analysis and Theory of Models. John Wiley, New York (1964)

    Google Scholar 

  81. Görtler, H.: Dimensionsanalyse. Springer, New York (1975)

    Google Scholar 

  82. Spurk, H.J.: Dimensionsanalyse in der Strömungslehre. Springer, Berlin (1992)

    Google Scholar 

  83. Barenblatt, G.I.: Similarity, Self-Similarity, and Intermediate Asymptotics. Consultants Bureau, New York (1979)

    Google Scholar 

  84. Günther, B.: Dimensional Analysis and Theory of Biological Similarity, Physiological Reviews 55, 659 (1975)

    Google Scholar 

  85. Günther, B., Morgado, E.: Biol. Res. 36, 405 (2003)

    Google Scholar 

  86. Yates, F.E.: Am. J. Physiol. 244, R589 (1983)

    Google Scholar 

  87. Wilks, G.: Dyn. Problems Math. Phys. 26, 151 (1983)

    MathSciNet  Google Scholar 

  88. Bluman, G.W., Cole, V.D.: Similarity Methods for Differential Equations. Springer, New York (1974)

    Google Scholar 

  89. Glockner, P.G., Singh, M.C. (ed.): Symmetry, Similarity and Group Theoretical Methods in Mechanics. The University of Calgary, Calgary (1974)

    Google Scholar 

  90. Euler, N., Steeb, W.H., Mulser, P.: J. Phys. Soc. Japan 60, 1132 (1991)

    MathSciNet  ADS  MATH  Google Scholar 

  91. Ceccherini, F., Cicogna, G., Pegoraro, F.: J. Phys. A: Math. Gen. 38, 4597 (2005)

    MathSciNet  ADS  MATH  Google Scholar 

  92. Guderley, G.: Luftfahrtforschung 19, 302 (1942)

    MathSciNet  Google Scholar 

  93. Meyer-ter-Vehn, J., Schalk, C.: Z. Naturforsch. 37a, 955 (1982)

    MathSciNet  ADS  Google Scholar 

  94. Paul Drake, R.: High-Energy-Density Physics: Fundamentals, Inertial Fusion and Experimental Astrophysics. Springer, Heidelberg (2008)

    Google Scholar 

  95. Lackner-Russo, D., Mulser, P.: A Macroscopic PIC Code for Beam-Target Interaction Studies Garching Report PLF 32 (1980)

    Google Scholar 

  96. Eidmann, K., Sigel, R.: Backscatter experiments. In: Schwarz, H.J., Hora, H. (eds.) Laser Interaction and Related Plasma Phenomena, Vol. 3B. Plenum Press, New York (1974)

    Google Scholar 

  97. Nakai, S. and the Super-Uniform Implosion Group: ILE Quarterly Progress Report 29, 9 (1989), ISSN 0289–1549

    Google Scholar 

  98. Yamanaka, C.: Past, present and future of laser fusion research. In: Nakai, S., Miley, G.M. (eds.) Laser Interaction, p. 3. American Institute of Physics, Woodbury (1996)

    Google Scholar 

  99. Nakai, S.: Progress of laser fusion at ILE and ICF research in Japan. In: Nakai, S., Miley, G.M. (eds.) Laser Interaction, p. 30. American Institute of Physics, Woodbury (1996)

    Google Scholar 

  100. Badziak, J., et al.: J. Appl. Phys. 104, 063310 (2008)

    ADS  Google Scholar 

  101. Caruso, A., Gratton, R.: Plasma Phys. 11, 839 (1969)

    ADS  Google Scholar 

  102. Shearer, J.W., Barnes, W.S.: Phys. Rev. Lett. 24, 92 (1970)

    ADS  Google Scholar 

  103. Zacharov, S.D., Krokhin, O.N., Kryokov, P.G., Tyurin, E.L.: JETP Lett. 12, 36 (1970)

    ADS  Google Scholar 

  104. Anisimov, S.I.: JETP Lett. 12, 287 (1970)

    ADS  Google Scholar 

  105. Salzmann, H.: J. Appl. Phys. 44, 113 (1973)

    ADS  Google Scholar 

  106. Malone, R.C., McCrory, R.L., Morse, R.L.: Phys. Rev. Lett. 34, 721 (1975)

    ADS  Google Scholar 

  107. Bell, A.R.: Transport in laser-produced plasmas. In: Hooper, M.B. (ed.) Laser Plasma Interactions 5: Inertial Confinement Fusion, Proc. 45th Scottish Universities Summer School in Physics, St. Andrews 1994, p. 139. Institute of Physics, Bristol and Philadelphia (1995)

    Google Scholar 

  108. Tahraoui, A., Bendib, A.: Phys. Plasmas 9, 3089 (2002)

    ADS  Google Scholar 

  109. Batishev, O.V., et al.: Phys. Plasmas 9, 2302 (2002)

    ADS  Google Scholar 

  110. Santos, J.J., et al.: Phys. Rev. Lett. 89, 025001 (2002)

    ADS  Google Scholar 

  111. Martinolli, E., et al.: Las. Part. Beams 20, 171 (2002)

    ADS  Google Scholar 

  112. Jain, N., Das, A., Kaw, P., Sengupta, S.: Phys. Plasmas 10, 29 (2003)

    ADS  Google Scholar 

  113. Sentoku, Y., Mima, K., Kaw, P., Nishikawa, K.: Phys. Rev. Lett. 90, 155001 (2003)

    ADS  Google Scholar 

  114. Pukhov, A., Meyer-ter-Vehn, J.: Phys. Rev. Lett. 76, 3975 (1996)

    ADS  Google Scholar 

  115. Adam, J.C., Guerin, S., Laval, G., Mora, P., Quesnel, B.: Phys. Rev. Lett. 78, 4765 (1997)

    ADS  Google Scholar 

  116. Ruhl, H., Sentoku, Y., Mima, K., Tanaka, K.A., Kodama, R.: Phys. Rev. Lett. 82, 743 (1999)

    ADS  Google Scholar 

  117. Gibbon, P., et al.: Phys. Plasmas 6, 947 (1999)

    ADS  Google Scholar 

  118. Ruhl, H., Macchi, A., Mulser, P., Cornolti, F., Hain, S.: Phys. Rev. Lett. 82, 2095 (1999)

    ADS  Google Scholar 

  119. Sauerbrey, R., et al.: Phys. Plasmas 2, 1635 (1994)

    ADS  Google Scholar 

  120. Gibbon, P., Bell, A.R.: Phys. Rev. Lett. 73, 664 (1994)

    ADS  Google Scholar 

  121. van Thiel, M., Alder, B.J.: Mol. Phys. 10, 427 (1966)

    ADS  Google Scholar 

  122. Mulser, P., Sigel, R., Witkowski, S.: Phys. Lett. 6C, 196 (1973)

    Google Scholar 

  123. Opower, H., Press, W.: Z. Naturforsch. 21a, 344 (1966)

    ADS  Google Scholar 

  124. Gregg, D.W., Thomas, S.J.: J. Appl. Phys. 37, 4313 (1966)

    ADS  Google Scholar 

  125. Basov, N.G. at al.: JETP Lett. 5, 141 (1967)

    ADS  Google Scholar 

  126. Mattioli, M., Veron, D.: Plasma Phys. 11, 684 (1969); Mattioli, M., Veron, D.: Plasma Phys. 13, 19 (1971)

    ADS  Google Scholar 

  127. Irons, F.E., Peacock, N.J.: J. Phys. B 7, 2084 (1974)

    ADS  Google Scholar 

  128. Fenner, N.C.: Phys. Lett. 22, 421 (1966)

    ADS  Google Scholar 

  129. Paton, B.E., Isenor, N.R.: Can. J. Phys. 46, 1237 (1968)

    ADS  Google Scholar 

  130. Demtröder, W., Jantz, W.: Plasma Phys. 12, 691 (1970)

    ADS  Google Scholar 

  131. Dinger, R., Rohr, K., Weber, H.: J. Phys. D 13, 2301 (1980); Dinger, R., Rohr, K., Weber, H.: J. Phys. D 17 1707 (1984); Las. Part. Beams 4, 239 (1986); Las. Part. Beams 5, 691 (1987)

    ADS  Google Scholar 

  132. Pitsch, K., Rohr, K., Weber, H.: J. Phys. D 14, L51 (1980)

    Google Scholar 

  133. Mann, K., Rohr, K.: Las. Part. Beams 10, 435 (1992)

    ADS  Google Scholar 

  134. Boland, B.C., Irons, F.E., McWhirter, R.W.P.: J. Phys. B 1, 1180 (1968)

    ADS  Google Scholar 

  135. Mulser, P.: Plasma Phys. 13, 1007 (1971)

    ADS  Google Scholar 

  136. Begay, F., Forslund, D.W.: Phys. Fluids 25, 1675 (1982)

    ADS  Google Scholar 

  137. Goforth, R.R., Hammerling, P.: J. Appl. Phys. 49, 3918 (1976)

    ADS  Google Scholar 

  138. Matzen, M.K., Pearlman, J.S.: Phys. Fluids 22, 449 (1979)

    ADS  Google Scholar 

  139. Latyshev, S.V., Rudskoi, I.V.: Sov. J. Plasma Phys. 11, 669 (1985)

    Google Scholar 

  140. Kunz, I.: Interpretation of the Ion Energy Spectra in Laser-produced Plasmas Based on the Recombination Model), PhD-Thesis (in German), TH Darmstadt (1990)

    Google Scholar 

  141. Granse, G., Völlmer, S., Lenk, A., Rupp, A., Rohr, K.: Appl. Surf. Sci. 96–98, 97 (1996)

    Google Scholar 

  142. Rupp, A., Rohr, K.: J. Phys. D: Appl. Phys. 28, 468 (1995)

    ADS  Google Scholar 

  143. Caruso, A., Gatti, G., Strangio, C.: Nuovo Cim. 2, 1213 (1983)

    ADS  Google Scholar 

  144. Sinha, B.K., Thum-Jäger, A., Rohr, K.P.: J. Plasma Fusion Res. 2, 406 (1999); Sinha, B.K., Thum-Jäger, A., Rohr, K.P.: J. Plasma Fusion Res. 410 (1999)

    Google Scholar 

  145. Thum-Jäger, A., Rohr, K.P.: J. Phys. D: Appl. Phys. 32, 2827 (1999)

    ADS  Google Scholar 

  146. Thum-Jäger, A., Sinha, B.K., Rohr, K.P.: Phys. Rev. E 61, 3063 (2000); Thum-Jäger, A., Sinha, B.K., Rohr, K.P.: Phys. Rev. E 61, 016405 (2001)

    ADS  Google Scholar 

  147. Müller, T., Sinha, B.K., Rohr, K.P.: Phys. Rev. E 67, 026415 (2003)

    ADS  Google Scholar 

  148. Kovalev, V.F., Bychenkov, V.Y., Tikhonchuk, V.T.: J. Exp. Theor. Phys. 95, 226 (2002)

    ADS  Google Scholar 

  149. Caruso, A., Gratton, R.: Plasma Phys. 10, 867 (1968)

    ADS  Google Scholar 

  150. Anisimov, S.I., Prokhorov, A.M., Fortov, V.E.: Sov. Phys. Usp. 142, 395 (1984)

    ADS  Google Scholar 

  151. Eidmann, K., et al.: Phys. Rev. A 30, 2568 (1984)

    ADS  Google Scholar 

  152. Meyer-ter-Vehn, J.: Nucl. Fusion 22, 561 (1982)

    Google Scholar 

  153. Caruso, A.: Plasma Phys. Contr. Fusion 18, 241 (1976)

    ADS  Google Scholar 

  154. Mulser, P., Hain, S., Cornolti, F.: Nucl. Instr. Meth. Phys. Res. A 415, 165 (1998)

    Google Scholar 

  155. van Kessel, C.G.M., Sigel, R.: Phys. Rev. Lett. 33, 1020 (1974)

    ADS  Google Scholar 

  156. Evans, R., et al.: Phys. Rev. Lett. 77, 3359 (1996)

    ADS  Google Scholar 

  157. Obenschain, S.P., Grun, J., Ripin, B.H., McLean, E.A.: Phys. Rev. Lett. 46, 1402 (1981)

    ADS  Google Scholar 

  158. Fabbro, R., Faral, B., Virmont, J., Pepin, H., Cottet, F., Romain, J.P.: Las. Part. Beams 4, 413 (1986)

    ADS  Google Scholar 

  159. Fabbro, R., Faral, B., Virmont, J., Cottet, F., Romain, J.P., Pepin, H.: Phys. Fluids B1, 644 (1989)

    ADS  Google Scholar 

  160. Faral, B., Fabbro, R., Virmont, J., Cottet, F., Romain, J.P.: Phys. Fluids B2, 371 (1990)

    ADS  Google Scholar 

  161. Cauble, R., Phillion, D.W., Hoover, T.J., Holmes, N.C., Kilkenny, J.D., Lee, R.W.: Phys. Rev. Lett. 70, 2102 (1993)

    ADS  Google Scholar 

  162. Regan, S.P., et al.: Phys. Rev. Lett. 89, 085003 (2002)

    ADS  Google Scholar 

  163. Löwer, T., et al.: Phys. Rev. Lett. 72, 3186 (1994)

    Google Scholar 

  164. Evans, A.M., et al.: Las. Part. Beams 14, 113 (1996)

    ADS  Google Scholar 

  165. Koenig, M., Faral, F., Boudenne, J.M.: Phys. Rev. E 50, R3314 (1994)

    ADS  Google Scholar 

  166. Benuzzi, A., et al.: Phys. Rev. E 54, 2162 (1996)

    ADS  Google Scholar 

  167. Batani, D., et al.: Laser & Part. Beams 21, 481 (2003)

    ADS  Google Scholar 

  168. Max, R., Claire, E., McKee, C.F., Mead, W.C.: Phys. Fluids 23, 1620 (1980)

    ADS  Google Scholar 

  169. Ahlborn, B., Key, M.H., Bell, A.R.: Phys. Fluids 25, 541 (1982)

    ADS  MATH  Google Scholar 

  170. Yamanaka, C.: Laser plasma and inertial confinement fusion. In: Rosenbluth, M.N., Sagdeev, R.Z. (eds.) Handbook of Plasma Physics, Vol. 3, p. 3. North-Holland, Amsterdam (1991)

    Google Scholar 

  171. Richardson, M.C.: Direct drive fusion studies. In: Rosenbluth, M.N., Sagdeev, R.Z. (eds.) Handbook of Plasma Physics, Vol. 3, p. 199. North-Holland, Amsterdam (1991)

    Google Scholar 

  172. Bobin, J.L.: Phys. Fluids 14, 2341 (1971)

    ADS  Google Scholar 

  173. Cojocaru, E., Mulser, P.: Plasma Phys. 17, 393 (1974)

    ADS  Google Scholar 

  174. Gitomer, S.J., Morse, R.L., Newberger, B.S.: Phys. Fluids 20, 234 (1977)

    ADS  Google Scholar 

  175. Matzen, M.K., Morse, R.L.: Phys. Fluids 22, 654 (1979)

    ADS  Google Scholar 

  176. Sanz, J., A. Liñ’an, Rodriguez, M., Sanmartin, J.R.: Phys. Fluids 24, 2098 (1981)

    ADS  Google Scholar 

  177. Fabbro, R., Claire, E., Max, R., Fabre, E.: Phys. Fluids 28, 1463 (1985)

    ADS  MATH  Google Scholar 

  178. Hain, S., Mulser, P.: Las. Part. Beams 15, 541 (1997)

    ADS  Google Scholar 

  179. Grun, J., et al.: Phys. Fluids 26, 588 (1983)

    ADS  Google Scholar 

  180. Manheimer, W.M., Colombant, D.G.: Phys. Fluids 25, 1644 (1982)

    ADS  Google Scholar 

  181. Pert, G.J.: J. Plasma Phys. 29, 415 (1983)

    ADS  Google Scholar 

  182. Herbst, M.J., Grun, J.: Phys. Fluids 24, 1917 (1981)

    ADS  Google Scholar 

  183. Sanmartin, J.R., Montanes, J.L., Barrero, A.: Phys. Fluids 26, 2754 (1983)

    ADS  Google Scholar 

  184. Manheimer, W.M., Colombant, D.G., Gardner, J.H.: Phys. Fluids 26, 2755 (1983)

    ADS  Google Scholar 

  185. Schmalz, R.F., Eidmann, K.: Phys. Fluids 29, 3483 (1986)

    ADS  Google Scholar 

  186. Schmalz, R.F.: Phys. Fluids 29, 1389 (1986)

    ADS  MATH  Google Scholar 

  187. Mulser, P.: Plasma Phys. Contr. Fusion 28, 203 (1986)

    ADS  Google Scholar 

  188. Mora, P.: Phys. Fluids 25, 1051 (1982)

    ADS  MATH  Google Scholar 

  189. Gupta, P.D., Tsui, Y.Y., Popil, R., Fedosejevs, R., Offenberger, A.A.: Phys. Fluids 30, 179 (1987)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mulser .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mulser, P., Bauer, D. (2010). The Laser Plasma: Basic Phenomena and Laws. In: High Power Laser-Matter Interaction. Springer Tracts in Modern Physics, vol 238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46065-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46065-7_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50669-0

  • Online ISBN: 978-3-540-46065-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics