Quantum Theoretical Approach to Optical Near-Fields and Some Related Applications

  • K. Kobayashi
  • S. Sangu
  • M. Ohtsu
Part of the Springer Series in Optical Sciences book series (SSOS, volume 86)


Several theoretical approaches, different from their viewpoints to optical near-field problems, have been proposed for a decade. The essential points in difference are related to what the optical near-field interaction is, or how materials respond to light confined in a small area less than the wavelength. The so-called classical approach that is based on the macroscopic Maxwell equations extends the theory to describe electromagnetic phenomena taking place on a-sub wavelength or even on a nanometer scale, while matter response to the electromagnetic field is represented by a macroscopic refractive index or a dielectric constant. The main concern in this approach is to find field distributions around the material system after solving the macroscopic Maxwell equations. Note that the electromagnetic fields in or near the material, are averaged over a large dimension, but still smaller than the wavelength, satisfy the macroscopic Maxwell equations, and that the “bare” electromagnetic fields on a nanometer scale should be governed by the microscopic Maxwell equations [1]. A number of analytical and numerical methods have been reported in order to obtain the relevant electromagnetic fields [2,3].


Elementary Excitation Sample Sphere Exciton Polaritons Bare Interaction Projection Operator Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.D. Jackson: Classical Electrodynamics, 3rd edn. (Wiley, New York 1999)zbMATHGoogle Scholar
  2. 2.
    J.P. Fillard: Near Field Optics and Nanoscopy (World Scientific, Singapore 1996)Google Scholar
  3. 3.
    M.A. Paesler, P.J. Moyer: Near-Field Optics (John Wiley Sons, New York 1996)Google Scholar
  4. 4.
    K. Cho: Prog. Theor. Phys. Suppl. 106, 225 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    H. Ishihara, K. Cho: Phys. Rev. B 48, 7960 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    K. Cho, Y. Ohfuti, K. Arima: Surf. Sci. 363, 378 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    M. Ohtsu, H. Hori: Near-Field Nano-Optics (Kluwer Academic /Plenum Publishers, New York 1999) pp. 281 - 296CrossRefGoogle Scholar
  8. 8.
    H. Hori: In: Near Field Optics ed. by D.W. Pohl, D. Courjon (Kluwer Academic, Dordrecht 1993) pp. 105 - 114Google Scholar
  9. 9.
    K. Kobayashi, M. Ohtsu: In: Near-Field Nano/Atom Optics and Technology ed. by M. Ohtsu (Springer, Tokyo Berlin Heidelberg 1998) pp. 288 - 290Google Scholar
  10. 10.
    J.J. Sakurai: Advanced Quantum Mechanics (Addison-Wesley, Reading 1967)Google Scholar
  11. 11.
    U. Weiss: Quantum Dissipative Systems, 2nd edn. (World Scientific, Singapore 1999)zbMATHCrossRefGoogle Scholar
  12. 12.
    P. Fulde: Electron Correlations in Molecules and Solids, 2nd edn. (Springer, Berlin Heidelberg New York 1993)CrossRefGoogle Scholar
  13. 13.
    H. Grabert: Projection Operator Techniques in Nonequilibrium Statistical Mechanics (Springer, Berlin Heidelberg New York 1982)Google Scholar
  14. 14.
    F. Haake: Statistical Treatment of Open Systems by Generalized Master Equations (Springer, Berlin Heidelberg New York 1973)Google Scholar
  15. 15.
    C.R. Willis, R.H. Picard: Phys. Rev. A 9, 1343 (1974)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    J. Rau, B. Muller: Phys. Rep. 272, 1 (1996)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    H. Hyuga, H. Ohtsubo: Nucl. Phys. A294, 348 (1978)CrossRefGoogle Scholar
  18. 18.
    K. Kobayashi, M. Ohtsu: J. Microscopy 194, 249 (1999)CrossRefGoogle Scholar
  19. 19.
    K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu: Phys. R ev. A 63, 013806 (2001)Google Scholar
  20. 20.
    A.L. Fetter, J.D. Walecka: Quantum Theory of Many-Particle Systems (McGraw-Hill, New York 1971)Google Scholar
  21. 21.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg: Photons and Atoms (John Wiley Sons, New York 1989)Google Scholar
  22. 22.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg: Atom-Photon Interactions (John Wiley Sons, New York 1992)Google Scholar
  23. 23.
    D.P. Craig, T. Thirunamachandran: Molecular Quantum Electrodynamics (Dover, New York 1998)Google Scholar
  24. 24.
    M. Scully, M.S. Zubairy: Quantum Optics (Cambridge University Press. Cambridge 1997)Google Scholar
  25. 25.
    M. Kaku: Quantum Field Theory (Oxford University Press, Oxford 1993) pp. 295 - 320Google Scholar
  26. 26.
    S. Weinberg: The Quantum Theory of Fields I, II, and III (Cambridge University Press, Cambridge 1995)Google Scholar
  27. 27.
    H. Haken: Quantum Field Theory of Solids (North-Holland, Amsterdam 1983)Google Scholar
  28. 28.
    J.J. Hopfield: Phys. Rev. 112, 1555 (1958)ADSzbMATHCrossRefGoogle Scholar
  29. 29.
    K. Cho: J. Phys. Soc. Jpn. 55, 4113 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    C. Kittel: Quantum Theory of Solids (John Wiley Sons, New York 1972)Google Scholar
  31. 31.
    D. Pines: Elementary Excitations in Solids (Perseus Books, Reading 1999)Google Scholar
  32. 32.
    P.W. Anderson: Concepts in Solids (World Scientific, Singapore 1997)CrossRefGoogle Scholar
  33. 33.
    C. Cohen-Tannoudji: Atoms in Electromagnetic Fields (World Scientific. Singapore 1994)Google Scholar
  34. 34.
    M. Ohtsu, K. Kobayashi, H. Ito, G.-H. Lee: Proc. IEEE 88, 1499 (2000)CrossRefGoogle Scholar
  35. 35.
    D.M. Eigler, E.K. Schweizer: Nature 344, 524 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    P. Zeppenfeld et al.: Ultramicroscopy 42 - 44, 128 (1992)Google Scholar
  37. 37.
    U. Staufer: In: Scanning Tunneling Microscopy II ed. by R. Wiesendanger, H.-J. Güntherodt (Springer, Berlin Heidelberg New York 1992) pp. 273 - 302Google Scholar
  38. 38.
    J. Ye, D.W. Vernooy, H.J. Kimble: Phys. Rev. Lett. 83, 4987 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    M. Ohtsu, S. Jiang, T. Pangaribuan, M. Kozuma: In: Near Field Optics ed. by D.W. Pohl, D. Courjon (Kluwer Academic, Dordrecht 1993) pp. 131 - 139CrossRefGoogle Scholar
  40. 40.
    J.P. Dowling, J. Gea-Banacloche: In: Advances in Atomic, Molecular, and Optical Physics 37 ed. by B. Bederson, H. Walther (Academic Press, San Diego 1996) pp. 1 - 94Google Scholar
  41. 41.
    V.V. Klimov, V.S. Letokhov: Opt. Commun. 121, 130 (1995)ADSCrossRefGoogle Scholar
  42. 42.
    H. Ito, K. Otake, M. Ohtsu: Proc. SPIE 3467, 250 (1998)ADSCrossRefGoogle Scholar
  43. 43.
    H. Ito, A. Takamizawa, H. Tanioka, M. Ohtsu: Proc. SPIE 3791, 2 (1999)Google Scholar
  44. 44.
    V. Klimov, V.S. Letokhov, M. Ducloy: Eur. Phys. J. D 5, 345 (1999)ADSGoogle Scholar
  45. 45.
    D.W. Vernooy, H.J. Kimble: Phys. Rev. A 55, 1239 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    V.V. Klimov, Y.A. Perventsev: Quantum Electronics 29, 847 (1999)ADSCrossRefGoogle Scholar
  47. 47.
    For example, Laser Cooling and Trapping of Atoms ed. by S. Chu, C. Wieman: J. Opt. Soc. Am. B 6, 2020 (1989)Google Scholar
  48. 48.
    K. Kobayashi, S. Sangu, H. Ito, M. Ohtsu: In: Near-Field Optics: Principles and Applications ed. by X. Zhu, M. Ohtsu (World Scientific, Singapore 2000) pp. 82 - 88Google Scholar
  49. 49.
    S. Sangu, K. Kobayashi, M. Ohtsu: J. Microscopy 202, 279 (2001)MathSciNetCrossRefGoogle Scholar
  50. 50.
    K. Jang, W. Jhe: Opt. Lett. 21, 236 (1996)ADSCrossRefGoogle Scholar
  51. 51.
    T. Saiki, M. Ohtsu: In: Near-Field Nano/Atom Optics and Technology ed. by M. Ohtsu (Springer, Tokyo Berlin Heidelberg 1998) pp. 15 - 29Google Scholar
  52. 52.
    Y. Leviatan: J. Appl. Phys. 60, 1577 (1986)ADSCrossRefGoogle Scholar
  53. 53.
    A. Roberts: J. Appl. Phys. 70, 4045 (1991)ADSCrossRefGoogle Scholar
  54. 54.
    L. Novotny, D.W. Pohl, P. Regli: J. Opt. Soc. Am. A 11, 1768 (1994)ADSCrossRefGoogle Scholar
  55. 55.
    For example, Cavity Quantum Electrodynamics ed. by P.R. Berman (Academic Press, San Diego 1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • K. Kobayashi
  • S. Sangu
  • M. Ohtsu

There are no affiliations available

Personalised recommendations