Fluorescence Spectroscopy with Surface Plasmon Excitation

  • T. Neumann
  • M. Kreiter
  • W. Knoll
Part of the Springer Series in Optical Sciences book series (SSOS, volume 86)


In recent years, much effort has been directed towards the development of optical biosensors. While direct sensors are capable of monitoring the presence of an analyte without the use of labelling groups, the class of indirect sensors exploits the signal enhancement caused by bound marker molecules. Surface plasmon spectroscopy (SPS) as a direct detection method [1] is known to lack sensitivity for monitoring of low molecular mass analytes. In order to enhance the sensitivity and to improve the detection limit the technique was combined with fluorescence detection schemes in surface plasmon fluorescence spectroscopy (SPFS), as described recently [2]. Here, we briefly review the theory of plasmon excitation and the experimental realization of SPFS.


Dispersion Relation Dielectric Medium Plasmon Excitation Resonance Angle Surface Plasmon Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Knoll: Annual Review of Physical Chemistry 49, 569 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    T. Liebermann, W. Knoll: Colloids and Surfaces A: Physicochemical and Engineering Aspects 171, 115 (2000)CrossRefGoogle Scholar
  3. 3.
    H. Raether: Surface Plasmon on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Mod. Phys. 111 (Springer, Berlin, 1988)Google Scholar
  4. 4.
    V.M. Agranovich: Surface Polaritons (North-Holland, Amsterdam, 1982)Google Scholar
  5. 5.
    P. Yeh: Optical Waves in Layereed Media (John Wiley Sons, New York, 1988)Google Scholar
  6. 6.
    E. Kretschmann: Zeitschrift für Physik 241, 313 (1971) 241.Google Scholar
  7. 7.
    E. Burstein, W.P. Chen, A. Hartstein: Journal of Vacuum Soc. 11, 1004 (1974)ADSCrossRefGoogle Scholar
  8. 8.
    J.R. Sambles, G.W. Bradberry, F. Yang: Contemporary Physics 32, 173 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    D. Axelrod, T.P. Burghardt, N.L. Thompson: Biophys. Bioeng. 13, 247 (1984)CrossRefGoogle Scholar
  10. 10.
    P.B. Johnson, R.W. Christey: Phys. Rev. B 6, 4370 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    A. Nemetz, W. Knoll: Raman Spectrosc. 27, 587 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    R. Amos, W.L. Barnes: Phys. Rev. B. 55, 7249 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    H. Kuhn: J. Chem. Phys. 53, 101 (1970)ADSCrossRefGoogle Scholar
  14. 14.
    W. Weber, C.F. Eagon: Opt. Lett. 4, 236 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    I. Pockrand, A. Brilliante, D. Möbius: Chem. Phys. Lett. 69, 499 (1980)ADSCrossRefGoogle Scholar
  16. 16.
    M. Kreiter: Oberflächenplasmonen-artige Resonanzen auf metallischen Gittern. Ph.D. Thesis, University of Mainz, Germany (2000)Google Scholar
  17. 17.
    R.E. Benner, R. Dornhaus, R.K. Chang: Opt. Commun. 30, 145 (1979)ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Attridge et al.: Biosens. Bioelectron. 6, 201 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • T. Neumann
  • M. Kreiter
  • W. Knoll

There are no affiliations available

Personalised recommendations