Modulation of an Electron Beam in Optical Near-Fields

  • J. Bak
  • R. Ishikawa
  • K. Mizuno
Part of the Springer Series in Optical Sciences book series (SSOS, volume 86)


Many kinds of electron beam devices have been developed and utilized in various scientific areas since the early 1900’s [1]. For instance, microwave amplifiers and oscillators, electron accelerators, and various types of electron microscopes have made major contributions to establish modern science and technology, such as high-speed communication, elementary particle physics, and solid-state physics. On the other hand, most of those for commercial use have been replaced by solid-state devices due to their power consumption and device size. Beam devices, however, have several advantages over solid-state devices, such as wider tuning frequency range and higher output power. Recent advances in vacuum microelectronics [2] and micromachining technology [3] provide a useful means for realizing small beam devices. In fact, electron emitters with dimensions of several microns have been fabricated through semiconductor processes [4].


Electron Beam Transition Rate Evanescent Wave Energy Spread Interaction Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Okamura: History of Electron Tubes. (IOS press, Inc., Washington DC 1994)Google Scholar
  2. 2.
    C.A. Spindt, I. Brodie, L. Humphrey, E.R. Westerberg: J. Appl. Phys. 47, 5248 (1976)ADSCrossRefGoogle Scholar
  3. 3.
    J. Mohr, C. Burbaum, P. Bley, W. Menz, U. Wallrabe: Micro System Technologies. ed. by H. Reichl (Springer, Berlin Heidelberg New York 1990)Google Scholar
  4. 4.
    K. Yokoo, M. Arai, M. Mori, J. Bae, S. Ono: J. Vac. Sci. Technol. B 13, 491 (1995)CrossRefGoogle Scholar
  5. 5.
    R.G.E. Hutter: Beam and Wave Electronics in Microwave Tubes. (D. Van Nostrand, Toronto 1960)zbMATHGoogle Scholar
  6. 6.
    C.A. Brau: ‘Free-Electron Lasers’. In: Advances in Electronics and Electron Phys, Suppl. 22. (Academic Press, New York 1990)Google Scholar
  7. 7.
    J. Lecante, Y. Ballu, D.M. Newns: Phys. Rev. Lett. 38, 36 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    H. Cohen, T. Maniv, R. Tenne, Y. Rosenfeld Hacohen, O. Stephan, C. Colliex: Phys. Rev. Lett. 80, 782 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    I.R. Senitzky: Phys. Rev. 95, 904 (1954)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    S.J. Smith, E.M. Purcell: Phys. Rev. Lett. 92, 1069 (1953)ADSGoogle Scholar
  11. 11.
    P.M. van den Berg: J. Opt. Soc. America 63, 1588 (1973)ADSCrossRefGoogle Scholar
  12. 12.
    M. Goldstein, J.E. Walsh, M.F. Kimmitt, J. Urata, C.L. Platt: Appl. Phys. Lett. 71, 452 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    K. Mizuno, S. Ono, O. Shimoe: Nature 253, 184 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Takeda, I. Matsui: Nucl. Instrum. Methods 62, 306 (1968)ADSCrossRefGoogle Scholar
  15. 15.
    R.B. Palmer: Particle Acceleratiors 11, 81 (1980)ADSGoogle Scholar
  16. 16.
    J.M. Wachtel: J. Appl. Phys. 50, 49 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    H. Schwarz, H. Hora: Appl. Phys. Lett. 15. 349 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    H. Hora, P.H. Handel: ‘New Experiments and Theoretical Development of the Quantum Modulation of Electrons (Schwarz-Hora Effect)’.In: Advances in Electronics and Electron Physics.. ed. by P.W. Hawkes (Academic Press, New York 1987) pp. 55–113Google Scholar
  19. 19.
    R.H. Pantell: ‘Interaction between Electromagnetic Fields and Electrons’. In: AIP Conference Proceedings No. 87, Physics of High Energy Particle Accelerators. ed. by R.A. Crrigan, F.R. Huson (American Institute of Physics, New York 1981) pp. 863–918Google Scholar
  20. 20.
    G.A. Massey: Appl. Opt. 23, 658 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    J. Bae. S. Okuyama, T. Akizuki, K. Mizuno: Nucl. Instrum. Methods 331. 509 (1993)Google Scholar
  22. 22.
    D. Marcuse: Engineering Quantum Electrodynamics. (Academic Press, New York, 1970) pp. 127–142Google Scholar
  23. 23.
    R. Ishikawa, J. Bae, K. Mizuno: J. Appl. Phys. 89, 4065 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    T.Y. Chou, A.T. Adams: IEEE Trans. Electromagn. Compat. 19 65 (1977)ADSCrossRefGoogle Scholar
  25. 25.
    Y. Leviatan: J. Appl. Phys. 60, 1577 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    D.P. Tsai, H.E. Jackson, R.C. Reddick, S.H. Sharp, R.J. Warmack: Appl. Phys. Lett. 56, 1515 (1990)ADSCrossRefGoogle Scholar
  27. 27.
    J. Bae, R. Ishikawa, S. Okuyama, T. Miyajima, T. Akizuki, K. Okamoto, K. Mizuno: Appl. Phys. Lett. 76, 2292 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    J. Bae, T. Nozokido, H. Shirai, H. Kondo, K. Mizuno: IEEE J. Quantum Electron. 30, 887 (1994)ADSCrossRefGoogle Scholar
  29. 29.
    J.F. Graczyk, S.C. Moss: Rev. Sci. Instrum. 40, 424 (1969)ADSCrossRefGoogle Scholar
  30. 30.
    K. Mizuno, J. Bae, T. Nozokido, K. Furuya: Nature 328, 45 (1987)ADSCrossRefGoogle Scholar
  31. 31.
    J. Bae, H. Shirai, T. Nishida, T. Nozokido, K. Furuya, K. Mizuno: Appl. Phys. Lett. 61, 870 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    M.S. Tobin: Proc. IEEE 73, 61 (1985)ADSCrossRefGoogle Scholar
  33. 33.
    J. Bae, K. Furuya, H. Shira, T. Nozokido, K. Mizuno: Jpn. J. Appl. Phys. 27, 408 (1988)ADSCrossRefGoogle Scholar
  34. 34.
    J. Bae, T. Okamoto, T. Fujii, K. Mizuno: Appl. Phys. Lett. 71, 3581 (1997)ADSCrossRefGoogle Scholar
  35. 35.
    M. Ohtsu: J. Lightwave Tech. 13, 1200 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. Bak
  • R. Ishikawa
  • K. Mizuno

There are no affiliations available

Personalised recommendations