Skip to main content

Regional Forebrain Patterning and Neural Subtype Specification: Implications for Cerebral Cortical Functional Connectivity and the Pathogenesis of Neurodegenerative Diseases

  • Chapter
Book cover Cortical Development

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 39))

Abstract

During the early embryonic period, dorsal telencephalic progenitor cells within the cortical ventricular zone (VZ) undergo radial migration and give rise to excitatory (glutamatergic) projection neurons that comprise the majority of cerebral cortical neurons and contribute to regional morphogenesis. By contrast, during perinatal life, current developmental models suggest that cortical oligodendrocytes (OLs) and astrocytes are generated from multipotent progenitors present within the cortical subventricular zone (SVZ). However, recent studies have shown that progenitor cells within the medial and lateral ganglionic eminences (MGE, LGE) of the ventral telencephalon can give rise to OLs and are also known to generate GABAergic neurons following tangential cortical migration. Although the majority of these ventral telencephalic progenitors disperse directly into the neocortex after migration, a subset of these LGE progenitors are destined for the cortical SVZ, where they give rise to both neuronal progenitors and to additional cells that become mitotically active within the cortical SVZ during the period of perinatal gliogenesis. Preliminary observations suggest that these cortical SVZ cells are derived from progenitors of the ganglionic eminences that are capable of generating both OLs and GABAergic neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson DJ (1999) Lineages and transcription factors in the specification of vertebrate primary sensory neurons. Curr Opin Neurobiol 9:517–524

    Article  PubMed  CAS  Google Scholar 

  • Anderson SA, Eisenstat DD, Shi L, Rubenstein JLR (1997) Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278:474–476

    Article  PubMed  CAS  Google Scholar 

  • Anderson SA, Marin O, Horn C, Jennings K, Rubenstein JLR (2001) Distinct cortical migrations from the medial and lateral ganglionic eminences. Development 128:358–363

    Google Scholar 

  • Birling MC, Price J (1998) A study of the potential of the embryonic rat telencephalon to generate oligodendrocytes. Dev Biol 193:110–113

    Article  Google Scholar 

  • Bongarzone ER, Byravan S, Givogri MI, Schonmann V, Campagnoni AT (2000) Platelet-derived growth factor and basic fibroblast growth factor regulate cell proliferation and the expression of notch-1 receptor in a new oligodendrocyte cell line. J Neurosci Res 62:319–328

    Article  PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1998) Evolution of neuronal changes in the course of Alzheimer’s disease. J Neural Transm Suppl 53:127–140

    PubMed  CAS  Google Scholar 

  • Brewster R, Mullor JL, Ruiz I, Altaba A (2000) Gli2 functions in FGF signaling during anteroposterior patterning. Development 127:4395–4405

    PubMed  Google Scholar 

  • Briscoe J, Ericson J (1999) The specification of neuronal identity by graded sonic hedgehog signaling. Cell Dev Biol 10:353–362

    Article  CAS  Google Scholar 

  • Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessel TM, Rubenstein JLR, Ericson J (1999) Homeobox gene NKx2.2 and specification of neuronal identity by graded sonic hedgehog signaling. Nature 398:622–627

    Article  PubMed  CAS  Google Scholar 

  • Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101:435–445

    Article  PubMed  CAS  Google Scholar 

  • Cameron RS, Rakic P (1991) Glial cell lineage in the cerebral cortex: a review and synthesis. GLIA 4:124–137

    Article  PubMed  CAS  Google Scholar 

  • Carroll WM, Jennings AR, Ironside LJ (1998) Identification of the adult resting progenitor cell by autoradiographic tracking of oligodendrocyte precursors in experimental CNS demyelination. Brain 121:293–302

    Article  PubMed  Google Scholar 

  • Casarosa S, Fode C, Guillemot F (1999) Mashl regulates neurogenesis in the ventral telencephalon. Development 126 525–534

    PubMed  CAS  Google Scholar 

  • Chambers CB, Peng Y, Nguyen H, Gaiano N, Fishell G, Nye JS (2001) Spatiotemporal selectivity of response to Notch 1 signals in mammalian forebrain precursors. Development 128:689–702

    PubMed  CAS  Google Scholar 

  • Chapouton P, Gartner A, Gotz M (1999) The role of Pax6 in restricting cell migration between developing cortex and basal ganglia. Development 126:5569–5579

    PubMed  CAS  Google Scholar 

  • Craig CG, Tropepe V, Morshead CM, Reynolds BA, Weiss S, van der Kooy D (1996) In vivo growth factor expansion of endogenous subependymal neural precursor cell populations in the adult mouse brain. I Neurosci 16:2649–2658

    CAS  Google Scholar 

  • de Carlos JA, Lopez-Mascaraque L, Valverde F (1996) Dynamics of cell migration from the lateral ganglionic eminence in the rat. J Neurosci 16:6146–6156

    PubMed  Google Scholar 

  • Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin 36. Neuron 31: 477–485

    Article  PubMed  CAS  Google Scholar 

  • Ebendal T, Bengtsson H, Soderstrom S (1998) Bone morphogenetic proteins and their receptors: potential functions in the brain. J Neurosci Res 15:139–146

    Article  Google Scholar 

  • Engelborghs S, DeDeyn PP (1997) The neurochemistry of Alzheimer’s disease. Acta Neurol Belg 97:67–84

    PubMed  CAS  Google Scholar 

  • Faux CH, Turnley AM, Epa R, Cappai R, Bartlett PF (2001) Interactions between fibroblast growth factors and notch regulate neuronal differentiation. J Neurosci 21:5587–5596

    PubMed  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and CNS repair. Brain Res Bull 49:377–391

    Article  PubMed  CAS  Google Scholar 

  • Fode C, Ma Q, Casarosa S, Ang SL, Anderson DJ, Guillemot F (2000) A role for neural determination genes in specifying the dorsoventral identity of telencephalic neurons. Genes Dev 14:67–80

    PubMed  CAS  Google Scholar 

  • Franklin RJ, Gilson JM, Blakemore WF (1997) Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res 50:337–344

    Article  PubMed  CAS  Google Scholar 

  • Furuta Y, Piston DW, Hogan BLM (1997) Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124:2203–2212

    PubMed  CAS  Google Scholar 

  • Gage FH, Ray J, Fisher LJ (1995) Isolation, characterization and use of stem cells from the CNS. Annu Rev Neurosci 18:159–192

    Article  PubMed  CAS  Google Scholar 

  • Galarreta M, Hestrin S (2001) Electrical synapses between GABA-releasing interneurons. Nat Rev 2:425–433

    Article  CAS  Google Scholar 

  • Glass M, Dragunow M, Faull RL (2000) The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 97:505–519

    Article  PubMed  CAS  Google Scholar 

  • Goldman JE, Zerlin M, Newman S, Zhang L, Gensert J (1997) Fate determination and migration of progenitors in the postnatal mammalian CNS. Dev Neurosci 19:42–48

    Article  PubMed  CAS  Google Scholar 

  • Gonchar Y, Burkhalter A (1997) Three distinct families of GABAergic neurons in rat visual cortex. Cerebral Cortex 7:347–358

    Article  PubMed  CAS  Google Scholar 

  • Gunhaga L, Jessell TM, Edlund T (2000) Sonic hedgehog signaling at gastrula stages specifies ventral telencephalic cells in the chick embryo. Development 127:3283–3293

    PubMed  CAS  Google Scholar 

  • Hardy RJ, Friedrich VL (1996) Oligodendrocyte progenitors are generated throughout the embryonic mouse brain but differentiate in restricted foci. Development 122:2059–2069

    PubMed  CAS  Google Scholar 

  • Hof PR (1997) Morphology and neurochemical characteristics of the vulnerable neurons in brain aging and Alzheimer’s disease. Eur Neurol 37:71–81

    Article  PubMed  CAS  Google Scholar 

  • Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R (2000) Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127:2515–2522

    PubMed  CAS  Google Scholar 

  • Horner PJ, Gage FH (2000) Regenerating the damaged central nervous system. Nature 407: 963–970

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyama Y, Miyata T, Okano H (2000) Musashil: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22:139–15

    Article  PubMed  CAS  Google Scholar 

  • Keirstead HS, Levine JM, Blakemore WF (1998) Response of the oligodendrocyte progenitor cell population (defined by NG2 labeling) to demyelination of the adult spinal cord. GLIA 22: 161–170

    Article  PubMed  CAS  Google Scholar 

  • Kenney AM, Rowitch DH (2000) Sonic hedgehog promotes G(1) cyclin expression and sustained cell cycle progression in mammalian neuronal precursors. Mol Cell Biol 20:9055–9067

    Article  PubMed  CAS  Google Scholar 

  • Kohtz JD, Baker DP, Corte G, Fishell G (1998) Regionalization within the mammalian telencephalon is mediated by changes in responsiveness to sonic hedgehog. Development 125: 5079–5089

    PubMed  CAS  Google Scholar 

  • Kondo T, Raff M (2000) Basic helix-loop-helix proteins and the timing of oligodendrocyte differentiation. Development 127:2989–2998

    PubMed  CAS  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 19:7881–7888

    PubMed  CAS  Google Scholar 

  • Levine JM, Stincone F, Lee YS (1993) Development and differentiation of glial precursor cells in the rat cerebellum. GLIA 7:307–321

    Article  PubMed  CAS  Google Scholar 

  • Levine JM, Reynolds R, Fawcett JW (2001) The oligodendrocyte precursor cell in health and disease. Trends Neurosci 24:39–47

    Article  PubMed  CAS  Google Scholar 

  • Levison SW, Goldman JE (1997) Multipotential and lineage restricted precursors coexist in the mammalian perinatal subventricular zone. J Neurosci Res 48:83–94

    Article  PubMed  CAS  Google Scholar 

  • Li WW, Cogswell CA, LoTurco JJ (1998) Neuronal differentiation of precursors in the neocortical ventricular zone is triggered by BMP. J Neurosci 18:8853–8862

    PubMed  CAS  Google Scholar 

  • Liu F, Massague J, Ruizi Altaba A (1998) Carboxy-terminally truncated Gli3 proteins associate with Smads. Nat Genet 20:325–326

    Article  PubMed  CAS  Google Scholar 

  • Lo LC, Johnson JE, Wuenschell CW, Saito T, Anderson D J (1991) Mammalian achaete-scute homolog 1 is transiently expressed by spatially-restricted subsets of early neuroepithelial and neural crest cells. Genes Dev 5:1524–1537

    Article  PubMed  CAS  Google Scholar 

  • Louie AY, HŸber MM, Ahrens ET, Rothb cher U, Moats R, Jacobs RE, Fraser SE, Meade TJ (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18:321–325

    Article  PubMed  CAS  Google Scholar 

  • Lu QR, Yuk D, Alberta JA, Zhu Z, Pawlitzky I, Chan J, McMahon AP, Stiles CD, Rowitch DH (2000) Sonic hedgehog-regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron 25:317–329

    Article  PubMed  CAS  Google Scholar 

  • Lumsden A, Krumlauf R (1996) Patterning the vertebrate neuraxis. Science 274:1109–1115

    Article  PubMed  CAS  Google Scholar 

  • Mabie PC, Mehler MF, Kessler JA (1999) Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J Neurosci 19:7077–7088

    PubMed  CAS  Google Scholar 

  • Magavi SS, Leavitt BR, Macklis JD (2000) Induction of neurogenesis in the neocortex of adult mice. Nature 405:951–955

    Article  PubMed  CAS  Google Scholar 

  • Marin O, Anderson SA, Rubenstein JLR (2000) Origin and molecular specification of striatal interneurons. J Neurosci 20:6063–6076

    PubMed  CAS  Google Scholar 

  • Martinez S, Cobos J (1998) Regional and cellular specification in the prosencephalic anlage of the neural plate. Eur J Neurosci 10 [Suppl]:323

    Google Scholar 

  • McCarthy M, Turnbull DH, Walsh CA, Fishell G (2001) Telencephalic neural progenitors appear to be restricted to regional and glial fates before the onset of neurogenesis. J Neurosci 21: 6772–6781

    PubMed  CAS  Google Scholar 

  • McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Gokhan S (2000) Mechanisms underlying neural cell death in neurodegenerative diseases: alterations of a developmentally-mediated cellular rheostat. Trends Neurosci 23: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Gokhan S (2001) Developmental mechanisms in the pathogenesis of neurodegenerative diseases. Prog Neurobiol 63:337–363

    Article  PubMed  CAS  Google Scholar 

  • Mehler MF, Gokhan S, Mabie PC, Kessler JA (2000) Embryonic cerebral cortical astrocytes are generated from multipotent neural precursor pools under the influence of distinct environmental signals. Soc Neurosci Abstr 26:1069

    Google Scholar 

  • Miller RH (1996) Oligodendrocyte origins. Trends Neurosci 19:92–96

    Article  PubMed  CAS  Google Scholar 

  • Miller RH, Hayes JE, Dyer KL, Sussman CR (1999) Mechanisms of oligodendrocyte commitment in the vertebrate CNS. Int J Dev Neurosci 17:753–763

    Article  PubMed  CAS  Google Scholar 

  • Mitchell IJ, Cooper AJ, Griffiths MR (1999) The selective vulnerability of striatopallidal neurons. Prog Neurobiol 59:691–719

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Perez SE, Qiao Z, Verdi JM, Hicks C, Weinmaster G, Anderson DJ (2000) Transient Notch activation initiates an irreversible switch from neurogenesis to gliogenesis by neural crest stem cells. Cell 101:499–510

    Article  PubMed  CAS  Google Scholar 

  • Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morasutti D, Weiss S, van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    Article  PubMed  CAS  Google Scholar 

  • Nadarajah B, Makarenkova H, Becker DL, Evans WH, Parnavelas JG (1998) Basic FGF increases communication between cells of the developing neocortex. J Neurosci 18:7881–7890

    PubMed  CAS  Google Scholar 

  • Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, Miyazono K, Taga T (1999) Synergistic signaling in fetal brain by STAT3-Smadl complex bridged by p300. Science 284:479–482

    Article  PubMed  CAS  Google Scholar 

  • Nery S, Wichterle H, Fishell G (2001) Sonic hedgehog contributes to oligodendrocyte specification in the mammalian forebrain. Development 128:527–540

    PubMed  CAS  Google Scholar 

  • Nieto M, Schurmans C, Britz O, Guillemot F (2001) Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29:401–413

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Yu M, Drazba JA, Tuohy VK (1997) Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. J Neurosci Res 48:299–312

    Article  PubMed  CAS  Google Scholar 

  • Nishiyama A, Chang A, Trapp BD (1999) NG2+ glial cells: a novel glial cell population in the adult brain. J Neuropathol Exp Neurol 58:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Noctor SC, Flint AC, Weissman TA, Dammerman RS, Kriegstein AR (2001) Neurons derived from radial glial cells establish radial units in neocortex. Nature 409:714–720

    Article  PubMed  CAS  Google Scholar 

  • Orentas DM, Hayes JE, Dyer KL, Miller RH (1999) Sonic hedgehog signaling is required during the appearance of spinal cord oligodendrocyte precursors. Development 126:2419–2429

    PubMed  CAS  Google Scholar 

  • Paganelli AR, Oscana OH, Prat MI, Franco PG, Lopez SL, Morelli L, Adamo AM, Riccomagno MM, Matsubara E, Shoji M, Affranchino JL, Castano EM, Carrasco AE (2001) The Alzheimer-related gene presenilin-1 facilitates sonic hedgehog expression in Xenopus primary neurogenesis. Mech Dev 107:119–131

    Article  PubMed  CAS  Google Scholar 

  • Panchision DM, Pickel JM, Studer L, Lee S-H, Turner PA, Hazel TG, McKay RDG (2001) Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 15:2094–2110

    Article  PubMed  CAS  Google Scholar 

  • Pappas IS, Parnavelas JG (1998) Basic fibroblast growth factor promotes the generation and differentiation of calretinin neurons in the rat cerebral cortex in vitro. Eur J Neurosci 10:1436–1445

    Article  PubMed  CAS  Google Scholar 

  • Parnavelas JG (2000) The origin and migration of cortical neurones: new vistas. Trends Neurosci 23:126–131

    Article  PubMed  CAS  Google Scholar 

  • Perez-Navarro E, Akerud P, Marco S, Canals JM, Tolosa E, Arenas E, Alberch J (2000) Neurturin protects striatal projection neurons but not interneurons in a rat model of Huntington’s disease. Neuroscience 98:89–96

    Article  PubMed  CAS  Google Scholar 

  • Perl DP (2000) Neuropathology of Alzheimer’s disease and related disorders. Neurol Clin 18: 847–864

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer SE, Warrington AE, Bansal R (1993) Oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  PubMed  CAS  Google Scholar 

  • Qi K, Cal J, Wu Y, Rui W, Lee J, Fu H, Rao M, Sussel L, Rubenstein J, Qiu M (2001) Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development 128:2723–2733

    PubMed  CAS  Google Scholar 

  • Ragsdale CW, Grove EA (2001) Patterning the mammalian cerebral cortex. Curr Opin Neurobiol 11:50–58

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH, Williams M, Tagle DA (1999) Recent advances in understanding the pathogenesis of Huntington’s disease. Trends Neurosci 22:248–255

    Article  PubMed  CAS  Google Scholar 

  • Redwine JM, Armstrong RC (1998) In vivo proliferation of oligodendrocyte progenitors expressing PDGFalphaR during early remyelination. J Neurobiol 37:413–428

    Article  PubMed  CAS  Google Scholar 

  • Reynolds R, Hardy R (1997) Oligodendroglial progenitors labeled with the 04 antibody persist in the adult rat cerebral cortex in vivo. J Neurosci Res 47:455–470

    Article  PubMed  CAS  Google Scholar 

  • Richardson WD, Pringle NP, Yu WP, Hall AC (1997) Origins of spinal cord oligodendrocytes: possible developmental and evolutionary relationships with motor neurons. Dev Neurosci 19:58–68

    Article  PubMed  CAS  Google Scholar 

  • Ross B, Bluml S (2001) Magnetic resonance svectroscovv of the human brain. New Anat 265:54-M

    Article  CAS  Google Scholar 

  • Rowitch DH, S-Jacques B, Lee SMK, Flax JD, Snyder EY, McMahon AP (1999) Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci 19: 8954–8965

    PubMed  CAS  Google Scholar 

  • Rozental R, Srinivas M, Gökhan S, Urban M, Dermietzel R, Kessler JA, Spray DC, Mehler MF (2000) Temporal expression of neuronal connexins during hippocampal ontogeny. Brain Res Rev 32: 57–71

    Article  PubMed  CAS  Google Scholar 

  • Rortocil T, Matter-Sadzinski L, Alliod C, Ballivet M, Matter JM (1997) NeuroM, a neural helix-loop-helix transcription factor, defines a new transition stage in neurogenesis. Development 124:3263–3272

    Google Scholar 

  • Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH (1999) Nurrl, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development 126:4017–4026

    PubMed  CAS  Google Scholar 

  • Satow T, Bae SK, Inoue T, Inoue C, Miyoshi G, Tomita K, Bessho Y, Hashimoto N, Kageyama R (2001) The basic helix-loop-helix gene hesr2 promotes gliogenesis in mouse retina. J Neurosci 21:1265–1273

    PubMed  CAS  Google Scholar 

  • Sieradzan KA, Mann DMA (2001) The selective vulnerability of nerve cells in Huntington’s disease. J Neuropathol Appl Neurobiol 27:1–21

    Article  CAS  Google Scholar 

  • Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X, Fan G, Greenberg ME (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104:365–376

    Article  PubMed  CAS  Google Scholar 

  • Sussel L, Marin O, Kimura S, Rubenstein JLR (1999) Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126:3359–3370

    PubMed  CAS  Google Scholar 

  • Takebayashi H, Yoshida S, Sugimori M, Kosako H, Kominami R, Nakafuku M, Nabeshima Y (2000) Dynamic expression of basic helix-loop-helix Olig family members: implication of Olig2 in neuron and oligodendrocyte differentiation and identification of a new member, Olig3. Mech Dev 99:143–148

    Article  PubMed  CAS  Google Scholar 

  • Tamamaki N, Fujimori E, Takauji R (1997) Origin and route of tangentially migrating neurons in the developing neocortical intermediate zone. J Neurosci 17:8313–8323

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Sugimoto Y, Tanaka K, Takauji R (1999) Cell migration from the ganglionic eminence to the neocortex investigated by labeling nuclei with UV irradiation via a fiber-optic cable. Neurosci Res 35:241–251

    Article  PubMed  CAS  Google Scholar 

  • Tanigaki, K, Nogaki F, Takahashi J, Tashiro K, Kurooka H, Honjo T (2001) Notch 1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate. Neuron 29:45–55

    Article  PubMed  CAS  Google Scholar 

  • Tekki-Kessaris N, Woodruff R, Hall AC, Gaffield W, Kimura S, Stiles CD, Rowitch DH, Richardson WD (2001) Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development 128:2545–2554

    PubMed  CAS  Google Scholar 

  • Thomas JL, Spassky N, Perez Villegas EM, Olivier C, Cobos I, Goujet-Zalc C, Martinez S, Zalc B (2000) Spatiotemporal development of oligodendrocytes in the embryonic brain. J Neurosci Res 59:471–476

    Article  PubMed  CAS  Google Scholar 

  • Tomita K, Moriyoshi K, Nakanishi S, Guillemot F, Kageyama R (2000) Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J 19:5460–5472

    Article  PubMed  CAS  Google Scholar 

  • Vonsattel J-P, Myers RH, Stevens TJ, Ferrante MS, Bird ED, Richardson EP (1985) Neuropathological classification of Huntington’s disease. J Neuropathol Exp Neurol 44:559–577

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Barres BA (2000) Up a notch: instructing gliogenesis. Neuron 27:197–200

    Article  PubMed  CAS  Google Scholar 

  • Weiss S, Dunne C, Hewson J, Wohl C, Wheatley M, Peterson AC, Reynolds BA (1996a) Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J Neurosci 16:7599–7609

    PubMed  CAS  Google Scholar 

  • Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, van der Kooy D (1996b) Is there a neural stem cell in the mammalian forebrain. Trends Neurosci 9:387–393

    Article  Google Scholar 

  • Wichterle H, Garcia-Verdugo JM, Herrera DG, Alvarez-Buylla A (1999) Young neurons from medial ganglion eminence disperse in adult and embryonic brain. Nat Neurosci 2:461–466

    Article  PubMed  CAS  Google Scholar 

  • Wilson SW, Rubenstein JLR (2000) Induction and dorsoventral patterning of the telencephalon. Neuron 28:641–651

    Article  PubMed  CAS  Google Scholar 

  • Woodruff RH, Tekki-Kessaris N, Stiles CD, Rowitch DH, Richardson WD (2001) Oligodendrocyte development in the spinal cord and telencephalon: common themes and new perspectives. Int J Dev Neurosci 19:379–385

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Cai J, Fu H, Wu R, Qi Y, Modderman G, Liu R, Qiu M (2000) Selective expression of Nkx-2.2 transcription factor in chicken oligodendrocyte progenitors and implications for the embryonic origin of oligodendrocytes. Mol Cell Biol 16:740–753

    CAS  Google Scholar 

  • Zhou Q, Wang S, Anderson DJ (2000) Identification of a novel family of oligodendrocyte lineage-specific basic helix-loop-helix transcription factors. Neuron 25:331–343

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehler, M.E. (2002). Regional Forebrain Patterning and Neural Subtype Specification: Implications for Cerebral Cortical Functional Connectivity and the Pathogenesis of Neurodegenerative Diseases. In: Hohmann, C. (eds) Cortical Development. Results and Problems in Cell Differentiation, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-46006-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-46006-0_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53665-6

  • Online ISBN: 978-3-540-46006-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics