Advertisement

Sheaves for a Grothendieck Topology

Chapter
  • 1.9k Downloads
Part of the Universitext book series (UTX)

Abstract

A presheaf on a topological space T is a contravariant functor on the category Op(T) of open subsets of T; a sheaf S is just a presheaf satisfying a patching condition and a locality condition, namely, the exactness of

Keywords

Topological Space Algebraic Geometry Full Subcategory Inductive Limit Abelian Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. Théorie des topos et cohomologie étale des schémas. Tome 1. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, Vol. 269. Springer-Verlag, Berlin-New York, 1972.Google Scholar
  2. 2.
    2. Théorie des topos et cohomologie étale des schémas. Tome 2. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint-Donat. Lecture Notes in Mathematics, Vol. 270. Springer-Verlag, Berlin-New York, 1972.Google Scholar
  3. 3.
    3. Artin, Michael. Grothendieck Topologies, Seminar Notes. Harvard Univ. Dept. of Math., Spring 1962.Google Scholar
  4. 4.
    4. Atiyah, M. F.; Macdonald, I. G. Introduction to commutative algebra. Addison-Wesley, 1969.Google Scholar
  5. 5.
    5. Griffiths, P.; Harris, J. Principles of algebraic geometry. Reprint of the 1978 original. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1994.zbMATHGoogle Scholar
  6. 6.
    6. Grothendieck, A. Sur quelques points d'algèbre homologique. Tôhoku Math. J. (2) 9 1957 119–221.zbMATHGoogle Scholar
  7. 7.
    7. Hartshorne, Robin.Algebraic geometry. Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.zbMATHGoogle Scholar
  8. 8.
    8. Hironaka, Heisuke. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II. Ann. of Math. (2) 79 (1964), 109–203; ibid. (2) 79 1964 205–326.CrossRefGoogle Scholar
  9. 9.
    9. Kunz, Ernst, Introduction to commutative algebra and algebraic geometry, Birkhäuser, Boston, 1985.zbMATHGoogle Scholar
  10. 10.
    10. Matsumura, Hideyuki. Commutative algebra. Second edition. Mathematics Lecture Note Series, 56. Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980.zbMATHGoogle Scholar
  11. 11.
    11. Milne, J.S., ëtale cohomology. Princeton University Press, Princeton, N.J., 1980 Background from Algebraic Geometry 141Google Scholar
  12. 12.
    12. Mumford, David. The red book of varieties and schemes. Second, expanded edition. Lecture Notes in Mathematics, 1358. Springer-Verlag, Berlin, 1999.zbMATHGoogle Scholar
  13. 13.
    13. Verdier, J.L. Catégories triangulées, état 0. Cohomologie étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1 2 . P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier. pp. 262–311. Lecture Notes in Mathematics, 569. Springer-Verlag, Berlin-New York, 1977.Google Scholar
  14. 14.
    14. Zariski, Oscar; Samuel, Pierre. Commutative algebra. Vols. 1, 2. With the cooperation of I. S. Cohen. Corrected reprinting of the 1958 edition. Graduate Texts in Mathematics, 28, 29. Springer-Verlag, New York-Heidelberg-Berlin, 1975.Google Scholar
  15. 15.
    15. Voevodsky, Vladimir; Suslin, Andrei; Friedlander, Eric. Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies 143, Princeton Univ. Press. 2000.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of MathematicsNortheastern UniversityBostonUSA

Personalised recommendations