Advertisement

Motivic Spaces and Spectra

Chapter
  • 1.8k Downloads
Part of the Universitext book series (UTX)

Abstract

As our last application of the machinery discussed in these talks, we come to an approach to the main topic of this summer school: motivic spaces and spectra.

Keywords

Algebraic Topology Homotopy Theory Motivic Functor Homotopy Category Lift Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    1. A. K. Bousfield and E. M. Friedlander. Homotopy theory of Ã-spaces, spectra, and bisimplicial sets. In Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II, Vol. 658 of Lecture Notes in Math., pp. 80–130. Springer, Berlin, 1978.CrossRefGoogle Scholar
  2. 2.
    2. A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations. Lecture Notes in Mathematics, Vol. 304. Springer-Verlag, Berlin, 1972.Google Scholar
  3. 3.
    3. B. I. Dundas, O. Röndigs, and P. A. Østvær. Motivic functors. Doc. Math., 8: 489–525 (electronic), 2003.zbMATHGoogle Scholar
  4. 4.
    4. W. G. Dwyer, P. S. Hirschhorn, D. M. Kan, and J. H. Smith. Homotopy limit functors on model categories and homotopical categories, Vol. 113 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2004.zbMATHGoogle Scholar
  5. 5.
    5. A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in stable homotopy theory, Vol. 47 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1997. With an appendix by M. Cole.zbMATHGoogle Scholar
  6. 6.
    6. P. G. Goerss and J. F. Jardine. Simplicial homotopy theory, Vol. 174 of Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.zbMATHGoogle Scholar
  7. 7.
    7. A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.zbMATHGoogle Scholar
  8. 8.
    8. P. S. Hirschhorn. Model categories and their localizations, Vol. 99 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2003.zbMATHGoogle Scholar
  9. 9.
    9. M. Hovey. Model categories, Vol. 63 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1999.zbMATHGoogle Scholar
  10. 10.
    10. M. Hovey. Spectra and symmetric spectra in general model categories. J. Pure Appl. Algebra, 165(1): 63–127, 2001.zbMATHCrossRefGoogle Scholar
  11. 11.
    11. M. Hovey, B. Shipley, and J. Smith. Symmetric spectra. J. Amer. Math. Soc., 3(1): 149–208, 2000.CrossRefGoogle Scholar
  12. 12.
    12. J. F. Jardine. Motivic symmetric spectra. Doc. Math., 5: 445–553 (electronic), 2000.zbMATHGoogle Scholar
  13. 13.
    13. M. Levine. Lectures in nordfjordeid. In Summer school on motivic homotopy theory. This volume.Google Scholar
  14. 14.
    14. E. L. Lima. The Spanier-Whitehead duality in new homotopy categories. Summa Brasil. Math., 4: 91–148, 1959.Google Scholar
  15. 15.
    15. M. Lydakis. Simplicial functors and stable homotopy theory. Preprint 98-049, SFB 343, Bielefeld, June 1998.Google Scholar
  16. 16.
    16. S. M. Lane. Categories for the working mathematician, Vol. 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.Google Scholar
  17. 17.
    17. J. Peter May. Simplicial objects in algebraic topology. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1992. Reprint of the 1967 original.zbMATHGoogle Scholar
  18. 18.
    18. J. R. Munkres. Topology: a first course. Prentice-Hall Inc., Englewood Cliffs, N.J., 1975.zbMATHGoogle Scholar
  19. 19.
    19. D. Quillen. Rational homotopy theory. Ann. of Math. (2), 90: 205–295, 1969.CrossRefGoogle Scholar
  20. 20.
    20. D. Quillen. On the (co-)homology of commutative rings. In Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), pp. 65–87. Amer. Math. Soc., Providence, R.I., 1970.Google Scholar
  21. 21.
    21. D. G. Quillen. Homotopical algebra. Lecture Notes in Mathematics, No. 43. Springer-Verlag, Berlin, 1967.zbMATHGoogle Scholar
  22. 22.
    22. V. Voevodsky, P. A. Østvær, and O. Röndigs. Voevodsky's lectures in nordfjordeid. In Summer school on motivic homotopy theory. This volume.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations