Skip to main content

Summary

The 3D Euler/Navier-Stokes code FLOWer of DLR is applied to a symmetric and a non-symmetric tunnel entry test case. The computed pressure signals are compared with full scale measurements of an ETR500 high speed train entering the north portal of the Terranuova Le Ville Tunnel. It is shown that FLOWer is able to compute tunnel entry configurations qualitatively correct.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

E :

total specific energy

u,v,w :

Cartesian velocity components

x,y,z:

Cartesian coordinates

x:

driving direction of the train, measured from the tunnel entrance

z:

opposite direction of gravity measured from the top of the rail

y:

normal to x and z forming a right hand system, measured from the tunnel center

p:

pressure

p0 :

static pressure of motionless atmosphere

t:

time

α:

dimensionless time parameter for definition of analytical test case (see chapter 3.1)

γ:

ratio of specific heats

ρ:

density

φ:

dimensionless parameter for definition of analytical pressure wave (see chapter 3.1)

References

  1. Schulte-Werning, B. “The TRANSAERO-Project: Joint European Railway Research in Transient Aerodynamics”. Notes on Numerical Fluid Mechanics 79, Springer-Verlag Berlin, 2002.

    Google Scholar 

  2. Grégoire, R. “Synthesis of WP4 as WP leader”. Notes on Numerical Fluid Mechanics 79, Springer-Verlag Berlin, 2002.

    Google Scholar 

  3. Pahlke, K. “Application of the Standard Aeronautical CFD Method FLOWer to Trains Passing on Open Track.”. Notes on Numerical Fluid Mechanics 79, Springer-Verlag Berlin, 2002.

    Google Scholar 

  4. Boniface, J.-C.; Pahlke, K. “Calculations of multibladed rotors in forward flight using 3D Euler methods of DLR and ONERA”. 22nd ERF, Brighton (UK), September 17–19, 1996.

    Google Scholar 

  5. Pahlke, K. “Extension of a 3D Time-Accurate Euler Code to the Calculation of Multibladed Rotors in Forward Flight without Wake Modelling”. In ECARP II: Validation of CFD Codes and Assessment of Turbulence Models, paper 11.11, Vieweg series ‘Notes on Numerical Fluid Mechanics’, edited by W. Haase, E. Chaput, E. Elsholz, M.A. Leschziner, U.R. Müller, 1996.

    Google Scholar 

  6. Sockel et. al. “Verformung einer Druckwelle in Eisenbahntunneln in Folge eines Schotterbettes und seitlicher Kammern”. Technische Universität Wien, 3/96, Report of a Contract with DB-AG.

    Google Scholar 

  7. Mancini, G. “Full scale measurements on high-speed train ETR 500 passing in open air and in tunnels of Italian high-speed line”. Notes on Numerical Fluid Mechanics 79, Springer-Verlag Berlin, 2002.

    Google Scholar 

  8. Matschke, G.“Full Scale Tests on Pressure Wave Effects in Tunnels”. Notes on Numerical Fluid Mechanics 79, Springer-Verlag Berlin, 2002.

    Google Scholar 

  9. Rety, J. M. “Numerical Simulation of the pressure wave generated when a Train enters a Tunnel”. Notes on Numerical Fluid Mechanics 79, Springer-Verlag Berlin, 2002.

    Google Scholar 

  10. Rety, J. M. “Numerical Investigations of Tunnel Ends Attenuating the Pressure Gradient Generated by a Train entering a Tunnel”. Notes on Numerical Fluid Mechanics 79, Springer-Verlag Berlin, 2002.

    Google Scholar 

  11. Kessler, A.; Berenger, T. “ Panel Method Study of the Unsteady Flow Due to ETR500/ETR500 Passing in Open Air and ETR500-Tunnel Entry”. TRANSAERO WP3: Technical Report, Reference 3S7D30T1.DZ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pahlke, K. (2002). Application of the Standard Aeronautical CFD Method FLOWer to ETR500 Tunnel Entry. In: Schulte-Werning, B., Grégoire, R., Malfatti, A., Matschke, G. (eds) TRANSAERO — A European Initiative on Transient Aerodynamics for Railway System Optimisation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45854-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45854-8_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07761-6

  • Online ISBN: 978-3-540-45854-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics