Skip to main content

Summary

The specifications of a new rig (HISTAR) are presented as well as some of its technical aspects. The aim of this facility is to complement existing rigs for the railway aerodynamic research and the development of future high-speed ground transportation systems in the velocity range beyond 250 km/h (up to 500 km/h). An important conclusion is that the analysis of viscous effects will be more and more necessary to understand the aerodynamic phenomena and their impact on high-speed ground transportation systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Auvity B., Kageyama T.: “Etude expérimentale et numérique de l’onde de compression générée par l’entrée d’un train dans un tunnel”, C. R. Acad. Sci., Paris, t. 323, série H b, p. 87–94, 1996, (in French).

    Google Scholar 

  2. Baker C. J., Humphreys N. D.: “Assessment of the Adequacy of Various Wind Tunnel Techniques to Obtain Aerodynamic Data for Ground Vehicles in Cross Winds”, Journal of Wind Engineering and Industrial Aerodynamics, vol. 60, n° 1–3, April 1996, p. 49–68.

    Google Scholar 

  3. Bellenoue M., Morinière V., Kageyama T.: “Experimental 3D-simulation of the compression wave due to train-tunnel entry”, to be published.

    Google Scholar 

  4. Bernard M.: “Un nouveau moyen d’étude des problèmes d’aérodynamique ferroviaire: La soufflerie a veine longue de l’institut aérotechnique de St-Cyr-L’école”, Revue Générale des Chemins de Fer (RGCF), vol. 92, December 1973, p. 704–711, (in French).

    Google Scholar 

  5. Bourquin V: Reduced-scale aerodynamic testing of high-speed vehicles in tunnels, Ph.D. Thesis n°1973, EPFL, Lausanne, 1999.

    Google Scholar 

  6. Bourquin V.: Design proposal of a high performance rig to study railways aerodynamic phenomena,EPFL, Switzerland, TRANSAERO report 4P8O30T1.DA, 1998.

    Google Scholar 

  7. Bourquin V.: Presentation of the STARLET test facility for the study of wave propagation,EPFL, Switzerland, TRANSAERO report 4P8O30T2.DA, 1998.

    Google Scholar 

  8. Brown J. M. B., Vardy A. E.: “Reflections of Pressure Waves at Tunnel Portals”, Journal of Sound and Vibration 173 (1), p. 95–111, 1994.

    Article  MATH  Google Scholar 

  9. Dayman B., Vardy A.E.: “TRUNNEL: A Gun-fired 0.5% Scale Facility for Pressure Transients Tests of Very High Speed Trains in Tunnels”, Proc. of the 7th International Symposium on the Aerodynamics and Ventilation of Vehicle Turnnels, ( Brighton, UK: 1991 ), p. 757–787.

    Google Scholar 

  10. Dayman B., Jr., Kurtz D. W: “Experimental Studies Relating to the Aerodynamics of Trains Travelling in Tunnels at Low Speeds”, Proc. of the 1st Int. Symp. on the aerodynamics & ventilation of vehicle tunnels (Canterbury, U.K: April 1973), Paper G2, p. G2/21 - G2/48.

    Google Scholar 

  11. Dayman B., Jr.: Considerations for Design and Operation of Facilities to Measure Aerodynamics of Vehicles Traveling in Tubes, AIAA Paper 70–225, New-York, 1970.

    Google Scholar 

  12. Eder R., Sockel H.: “Calculation of turbulent flow in the annular gap between the walls of train and tunnel”, Proc. of the 5th Int. Symp. on the aerodynamics & ventilation of vehicle tunnels,(Lille, France: 1985), Paper El, p. 259–284.

    Google Scholar 

  13. Gaillard M. A.: Zur Aerodynamik der Zugbegegnung im Tunnel und auf offener Strecke, Eidgenös- sische Technische Hochschule Zürich, Dissertation n° 4874, Juris Druck Verlag, Zürich, 1973.

    Google Scholar 

  14. Gaillard M. A.: “Aerodynamics of Trains in Tunnels”, Proc. of the 1st Int. Symp. on the aerodynamics & ventilation of vehicle tunnels (Canterbury, U.K: April 1973), Paper J4, p. J4/33 - J4/47.

    Google Scholar 

  15. Gawthorpe R. G., Pope C. W.: `Aerodynamic Aspects of Train Design for Operation through the Channel Tunnel“, Proc. of the Institution of Mechanical Engineer (IMechE), International conference on train technology for the tunnel (Le Touquet, France: 4–5 November 1992), paper C451/003.

    Google Scholar 

  16. Goodman T. R, Lehman A. F.: Static Aerodynamic Force Measurements of Bodies in Tube, CFSTI Report TR-68–45, PB 177 671, Oceanics, Inc., USA, April 1968.

    Google Scholar 

  17. Grégoire R, Réty J.-M., Masbemat F., Morinière V., Bellenoue M., Kageyama T.: “Experimental study at scale 1/70th and numerical simulations of the generation of pressure waves and micro-pressure waves due to high-speed train-tunnel entry”, Proc. of the 9th Intl. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels (Aosta, Italy: 6–8 October 1997 ), BHR Group Conference Series, Bury St. Edmonds, London: Mech. Eng Publications Ltd., 1997.

    Google Scholar 

  18. Gregorek G. M., Engle J. H.: An Experimental Study of Aerodynamics of Vehicles Traveling at High Speeds through Long Tubes, Report PB 188 848, Ohio State University, Columbus, USA, April 1969.

    Google Scholar 

  19. Hoppe R. G., Gouse S. W. Jr.: Fluid Dynamic Drag on Vehicles traveling through Tubes, Report PB 188 451, Carnegie Institute of Technology, Pittsburgh, Pennsylvania, USA, August 1969.

    Google Scholar 

  20. Maeda T., Matsumura T., lids M., Koji N., Uchida K.: “Effect of shape of train nose on compression wave generated by train entering a tunnel”, Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicle,STECH’93, (Yokohama, Japan: 1993), vol. 2, paper PS3–8, p. 315–319.

    Google Scholar 

  21. Magnus D. E., Panunzio S.: Experimental investigation of the near flow field for tube vehicle, Report PB 198 205, General Applied Science Laboratories, Westbury, New-York, USA, November 1970.

    Google Scholar 

  22. Marte J. E.: The Design and Operation of a Large Tube-Vehicle Aerodynamic Testing Facility, AIAA paper n° 72–1001, presented at the American Institute for Aeronautics and Astronautics 7th Aerodynamic Testing Conference, Palo Alto, California, September 1972.

    Google Scholar 

  23. Matsuo K., Aoki T., Kashimura H., Kawaguchi M., Takeuchi N.: “Attenuation of Compression Waves in a High-speed Railway Tunnel Simulator”, Proc. of the 7th Int. Symp. on the aerodynamics & ventilation of vehicle tunnels, ( Brighton, UK: 1991 ), p. 239–252.

    Google Scholar 

  24. Nayak U. S. L., Gralewski Z. A., Stevens S. J.: “The Aerodynamic Drag of Tube Vehicles Travelling at Low Subsonic Speeds”, Proc. of the 2nd Int. Symp. on the aerodynamics & ventilation of vehicle tunnels,(Cambridge, UK: 1976), Paper El, p. E1/1-E1/22.

    Google Scholar 

  25. Peiffer A., Ottitsch F., Sockel H.: `Experimental and theoretical investigation of two-and three-dimensional pressure waves propagating inside a tunnel due to train passage“, Proc. of the 8th Intl. Symp. on Aerodynamics and Ventilation of Vehicle Tunnels ( Liverpool, UK: 1994 ), p. 151–174.

    Google Scholar 

  26. Peters J.-L.: “L’aérodynamique des trains à sustentation et guidage magnétique”, Revue Générale des Chemins de Fer (RGCF), January 1980, (in French).

    Google Scholar 

  27. Pope C.W.: “The simulation of flows in railway tunnels using a 1/25 th scale moving model facility”, Proc. of the 7th Int. Symp. on the aerodynamics & ventilation of vehicle tunnels (Brighton, UK:1991), p. 709–737.

    Google Scholar 

  28. Sockel H., Krönke I.: “Draught reduction in subway systems”, Proc. of the 5th Int. Symp. on the aerodynamics & ventilation of vehicle tunnels, Lille, France, 1985, Paper C3, p. 25.

    Google Scholar 

  29. Swarden M. C.: Vehicle-Tunnel Entry at Subsonic Speeds, MIT, USA, Report PB 218 840, 1973.

    Google Scholar 

  30. Takayama K., Saito T., Sasoh A., Onodera O., Funabashi S., Kaneko R., Matsui Y.: “A numerical and experimental study on sonic booms generated from high speed train tunnels”, Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicle,STECH’93, (Yokohama, Japan: 1993), vol. 2, paper PS3–6, p. 305–309.

    Google Scholar 

  31. Tanaka T., Yamagiwa I., Yoshimura T., Yoshida K., Nagura T., Ooishi M.: “Acoustic performance of the experimental apparatus for sonic booms from the railway tunnel whose scale is 1/30 and in which the maximum speed of the train is 983 km/h”, Preprint of the 74 th JSME Fall Annual Meeting, September 1996, p. 47–48, (in Japanese).

    Google Scholar 

  32. Tyll J. S., Liu D., Schetz J.A., Marchman J.F.: “Experimental studies of magnetic levitation train aerodynamics”, AIAA Journal, vol. 34 n° 12, December 1996, p. 2465–2470.

    Google Scholar 

  33. Valensi J., Favier D., Magallon D.: “Theoretical and Experimental Investigation of the Piston Effect in a Twin Tunnel Subway.”, Proc. of the 2nd Int. Symp. on the aerodynamics & ventilation of vehicle tunnels,(Cambridge, UK: 1976), Paper E3, p. E3/57 - E3/79.

    Google Scholar 

  34. Vardy A. E.: “Measured Pressures in a Very High Speed Tunnel”, Proceedings of the International Conference on Speedup Technology for Railway and Maglev Vehicle, STECH’93, (Yokohama, Japan: 22–26 Nov$11993), vol. 2, paper B4–2-(1), p. 161–166, 1993.

    Google Scholar 

  35. White W. R., Pope C. W.: “The Use of a Hydraulic Analogy for Modeling the Unsteady Flows in Railway Tunnels”, Proc. of the 3rd Int. Symp. on the aerodynamics & ventilation of vehicle tunnels,(Sheffield, UK:1979), Paper Hi, p.325–342.

    Google Scholar 

  36. de Wolf W. B., Demmenie E.A.F.A: A new test facility for the study of interacting pressure waves and their reduction in tunnels for high speed trains, NLR, Amsterdam, The Netherlands, Report TP 97239 L, 1997.

    Google Scholar 

  37. Yamagiwa I., Tanaka T., Oda T., Nagura T., Ooishi M.: “Experimental study of compression wave in a entrance of high speed tunnel with scale model”, Preprint of the 74 th JSME Fall Annual Meeting, September 1996, p. 45–46, (in Japanese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bourquin, V., Monkewitz, M., Monkewitz, P. (2002). Reduced-scale experiments for railway applications. In: Schulte-Werning, B., Grégoire, R., Malfatti, A., Matschke, G. (eds) TRANSAERO — A European Initiative on Transient Aerodynamics for Railway System Optimisation. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45854-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45854-8_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07761-6

  • Online ISBN: 978-3-540-45854-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics