Skip to main content

Entorhinal Grid Cells and the Representation of Space

  • Chapter
Book cover Memories: Molecules and Circuits

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 744 Accesses

Abstract

The ability to find one’s way depends on the brain’s ability to integrate information about location, direction and distance. The algorithms responsible for this integration are implemented in a large brain network that includes both hippocampal and parahip-pocampal cortices, as indicated by the existence of place cells in the hippocampus and head-direction cells in the dorsal presubiculum and a number of other regions. Recent results have pointed to the medial entorhinal cortex (MEC) as a possible site for the dynamic representation of position in animals that move through a two-dimensional environment. Layer II of the MEC contains position-sensitive neurons - grid cells - whose firing fields form a periodic triangular pattern that tiles the entire environment covered by the animal during exploration of an open surface. Grid cells are observed in all principal layers of MEC, but intermingle with head direction cells in layers III, V and VI. The two cell types form a continuous population in which a subset of the neurons, predominantly in layers III and V, have conjunctive grid and head-direction properties. The majority of the cells are modulated by velocity. These observations suggest that, despite the differential hippocampal and neocortical connections of different layers of the MEC, the area operates as an integrated unit, with significant interlaminar interaction between cells with different functional properties. As the animal moves across a surface, activity may be translated across the superficial sheet of grid cells by convergence of position, direction and velocity information in a neural subpopulation with conjunctive firing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH (1990) Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog Brain Res 83:287–300

    PubMed  CAS  Google Scholar 

  • Bostock E, Muller RU, Kubie JL (1991) Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1:193–205

    Article  PubMed  CAS  Google Scholar 

  • Burwell RD (2000) The parahippocampal region: corticocortical connectivity. Ann NY Acad Sci 911:25–42

    PubMed  CAS  Google Scholar 

  • Dolorfo CL, Amaral DG (1998) Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J Comp Neurol 398:25–48

    Article  PubMed  CAS  Google Scholar 

  • Frank LM, Brown EN, Wilson M (2000) Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–178

    Article  PubMed  CAS  Google Scholar 

  • Fuhs MC, Touretzky DS (2006) A spin glass model of path integration in rat medial entorhinal cortex. J Neurosci 26:4266–4276

    Article  PubMed  CAS  Google Scholar 

  • Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B (2004) Spatial representation in the entorhinal cortex. Science 305:1258–1264

    Article  PubMed  CAS  Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  PubMed  CAS  Google Scholar 

  • Hamam BN, Kennedy TE, Alonso A, Amaral DG (2000) Morphological and electrophysiological characteristics of layer V neurons of the rat medial entorhinal cortex. J Comp Neurol 418:457–472

    Article  PubMed  CAS  Google Scholar 

  • Hirase H, Leinekugel X, Csicsvari J, Czurko A, Buzsaki G (2001) Behavior-dependent states of the hippocampal network affect functional clustering of neurons. J Neurosci 21:RC145

    Google Scholar 

  • Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI (2001) Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J Neurosci 21:1635–1644

    PubMed  CAS  Google Scholar 

  • Jung MW, Wiener SI, McNaughton BL (1994) Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J Neurosci 14:7347–7356

    PubMed  CAS  Google Scholar 

  • Kentros C, Hargreaves E, Hawkins RD, Kandel ER, Shapiro M, Muller RV (1998) Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280:2121–2126

    Article  PubMed  CAS  Google Scholar 

  • Kjelstrup KB, Solstad T, Brun VH, Fyhn M, Hafting T, Leutgeb S, Witter MP, Moser M-B, Moser EI (2006) Spatial scale expansion along the dorsal-to-ventral axis of hippocampal area CA3 in the rat. 5th Forum of European Neuroscience, Vienna, Austria

    Google Scholar 

  • Kloosterman F, van Haeften T, Witter MP, Lopes da Silva FH (2003) Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re-entrance in the hippocampal-entorhinal system. Eur J Neurosci 18:3037–3042

    Article  PubMed  Google Scholar 

  • Knierim JJ, Kudrimoti HS, McNaughton BL (1995) Place cells, head-direction cells and the learning of landmark stability. J Neurosci 15:1648–1659

    PubMed  CAS  Google Scholar 

  • Leutgeb JK, Leutgeb S, Treves A, Meyer R, Barnes CA, McNaughton BL, Moser MB, Moser EI (2005a) Progressive transformation of hippocampal neuronal representations in “morphed” environments. Neuron 48:345–358

    Article  PubMed  CAS  Google Scholar 

  • Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, Moser MB (2005b) Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309:619–623

    Article  PubMed  CAS  Google Scholar 

  • Leutgeb S, Leutgeb JK, Moser MB, Moser EI (2005c) Place cells, spatial maps and the population code for memory. Curr Opin Neurobiol 15:738–746

    Article  PubMed  CAS  Google Scholar 

  • Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416:90–94

    Article  PubMed  CAS  Google Scholar 

  • Lingenhohl K, Finch DM (1991) Morphological characterization of rat entorhinal neurons in vivo: soma-dendritic structure and axonal domains. Exp Brain Res 84:57–74

    Article  PubMed  CAS  Google Scholar 

  • Maguire EA, Frackowiak RS, Frith CD (1997) Recalling routes around London: activation of the right hippocampus in taxi drivers. J Neurosci 17:7103–7110

    PubMed  CAS  Google Scholar 

  • Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O’Keefe J (1998) Knowing where and getting there: a human navigation network. Science 280:921–924

    Article  PubMed  CAS  Google Scholar 

  • Markus EJ, Qin YL, Leonard B, Skaggs WE, McNaughton BL, Barnes CA (1995) Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J Neurosci 15:7079–7094

    PubMed  CAS  Google Scholar 

  • Maurer AP, Vanrhoads SR, Sutherland GR, Lipa P, McNaughton BL (2005) Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus 15:841–852

    Article  PubMed  Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B (2006) Path-integration and the neural basis of the “cognitive map”. Nat Rev Neurosci 7:663–678

    Article  PubMed  CAS  Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwis-senschaften 67:566–567

    Article  Google Scholar 

  • Morris RMG, Garrud P, Rawlins JNP, O’Keefe JO (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  PubMed  CAS  Google Scholar 

  • Nadel L (1991) The hippocampus and space revisited. Hippocampus 1:221–229

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, Oxford

    Google Scholar 

  • Olton DS, Walker JA, Gage FH (1978) Hippocampal connections and spatial discrimination. Brain Res 139:295–308

    Article  PubMed  CAS  Google Scholar 

  • Parron C, Save E (2004) Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp Brain Res 159:349–359

    Article  PubMed  Google Scholar 

  • Quirk GJ, Muller RU, Kubie JL, Ranck JB Jr (1992) The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J Neurosci 12:1945–1963

    PubMed  CAS  Google Scholar 

  • Redish AD, Battaglia FP, Chawla MK, Ekstrom AD, Gerrard JL, Lipa P, Rosenzweig ES, Worley PF, Guzowski JF, McNaughton BL, Barnes CA (2001) Independence of firing correlates of anatomically proximate hippocampal pyramidal cells. J Neurosci 21:RC134

    Google Scholar 

  • Samsonovich A, McNaughton BL (1997) Path integration and cognitive mapping in a continuous attractor neural network model. J Neurosci 17:272–275

    Google Scholar 

  • Sargolini F, Fyhn M, Hafting T, McNaughton B, Witter MP, Moser M-B, Moser EI (2006) conjunctive representation of position, direction and velocity in the medial entorhinal cortex. Science 312:680–681

    Article  Google Scholar 

  • Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psych 20:11–21

    CAS  Google Scholar 

  • Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306

    Article  PubMed  CAS  Google Scholar 

  • Steffenach HA, Witter M, Moser MB, Moser EI (2005) Spatial memory in the rat requires the dorsolateral band of the entorhinal cortex. Neuron 45:301–313

    Article  PubMed  CAS  Google Scholar 

  • Taube JS, Muller RU, Rank JB Jr (1990a) Head direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10:420–435

    PubMed  CAS  Google Scholar 

  • Taube JS, Muller RU, Ranck JB Jr (1990b) Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J Neurosci 10:436–447

    PubMed  CAS  Google Scholar 

  • van Haeften T, Baks-te-Bulte TL, Goede PH, Wouterlood FG, Witter MP (2003) Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. Hippocampus 13:943–948

    Article  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Witter MP, Amaral DG (2004) The hippocampal formation. In: Paxinos G (ed) The rat nervous system. Edition 3. Academic Press, San Diego, pp 637–703

    Google Scholar 

  • Witter MP, Groenewegen HJ, Lopes da Silva FH, Lohman AH (1989) Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region. Prog Neurobiol 33:161–253

    Article  PubMed  CAS  Google Scholar 

  • Wood ER, Dudchenko PA, Eichenbaum H (1999) The global record of memory in hippocampal neuronal activity. Nature 397:613–616

    Article  PubMed  CAS  Google Scholar 

  • Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H (2000) Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–633

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sargolini, F., Moser, E.I. (2007). Entorhinal Grid Cells and the Representation of Space. In: Bontempi, B., Silva, A.J., Christen, Y. (eds) Memories: Molecules and Circuits. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45702-2_9

Download citation

Publish with us

Policies and ethics