Skip to main content

From Molecule to Memory System: Genetic Analyses in Drosophila

  • Chapter
Memories: Molecules and Circuits

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Abstract

Despite the fact that the Drosophila brain has only 100 000 cells, it produces complex behaviors and sustains various forms of learning and memory. We show here how the power of Drosophila molecular genetics permits the interconnecting of the different levels of memory analyses: molecular, network and system. In particular new, tools allow a precise spatial and temporal control of network activity, as well as recording of brain activity. Recent results indicate that the Drosophila brain is the site of complex phenomena more frequently associated with mammalian species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashraf SI, McLoon AL, Sclarsic SM, Kunes S (2006) Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124:191–205

    Article  PubMed  CAS  Google Scholar 

  • Bellen HJ, O’Kane CJ, Wilson C, Grossniklaus U, Pearson RK, Gehring WJ (1989) P-element-mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev 3:1288–1300

    PubMed  CAS  Google Scholar 

  • Bier E (2005) Drosophila, the golden bug, emerges as a tool for human genetics. Nature Rev Genet 6:9–23

    Article  CAS  Google Scholar 

  • Boynton S, Tully T (1992) latheo, a new gene involved in associative learning and memory in Drosophila melanogaster, identified from P element mutagenesis. Genetics 131:655–672

    PubMed  CAS  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    PubMed  CAS  Google Scholar 

  • Burcin MM, Schiedner G, Kochanek S, Tsai SY, O’Malley BW (1999) Adenovirus-mediated regulable target gene expression in vivo. Proc Natl Acad Sci USA 96:355–360

    Article  PubMed  CAS  Google Scholar 

  • Chen MS, Obar RA, Schroeder CC, Austin TW, Poodry CA, Wadsworth SC, Vallee RB (1991) Multiple forms of dynaminare encoded by shibire, a Drosophila gene involved in endocytosis. Nature 351:583–586

    Article  PubMed  CAS  Google Scholar 

  • Chiang AS, Blum A, Barditch J, Chen YH, Chiu SL, Regulski M, Armstrong JD, Tully T, Dubnau J (2004) radish encodes a phospholipase-A2 and defines a neural circuit involved in anesthesia-resistant memory. Curr Biol 14:263–272

    Article  PubMed  CAS  Google Scholar 

  • Comas D, Petit F, Preat T (2004) Drosophila long-term memory formation involves regulation of cathepsin activity. Nature 430:460–463

    Article  PubMed  CAS  Google Scholar 

  • Connolly JB, Roberts IJ, Armstrong JD, Kaiser K, Forte M, Tully T, O’Kane CJ (1996) Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274:2104–2107

    Article  PubMed  CAS  Google Scholar 

  • Crittenden JR, Skoulakis EM, Han KA, Kalderon D, Davis RL (1998) Tripartite mushroom body architecture revealed by antigenic markers. Learn Mem 5:38–51

    PubMed  CAS  Google Scholar 

  • Davis RL (2004) Olfactory learning. Neuron 44:31–48

    Article  PubMed  CAS  Google Scholar 

  • Davis RL, Davidson N (1984) Isolation of the Drosophila melanogaster dunce chromosomal region and recombinational mapping of dunce sequences with restriction site polymorphisms as genetic markers. Mol Cell Biol 4:358–367

    PubMed  CAS  Google Scholar 

  • de Belle JS, Heisenberg M (1994) Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263:692–695

    Article  PubMed  Google Scholar 

  • DeZazzo J, Sandstrom D, de Belle S, Velinzon K, Smith P, Grady L, DelVecchio M, Ramaswami M, Tully T (2000) nalyot, a mutation of the Drosophila myb-related Adf1 transcription factor, disrupts synapse formation and olfactory memory. Neuron 27:145–158

    Article  PubMed  CAS  Google Scholar 

  • Drier EA, Tello MK, Cowan M, Wu P, Blace N, Sacktor TC, Yin JC (2002) Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nature Neurosci 5:316–324

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Grady L, Kitamoto T, Tully T (2001) Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature 411:476–480

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Chiang AS, Tully T (2003a) Neural substrates of memory: from synapse to system. J Neurobiol 54:238–253

    Article  PubMed  CAS  Google Scholar 

  • Dubnau J, Chiang AS, Grady L, Barditch J, Gossweiler S, McNeil J, Smith P, Buldoc F, Scott R, Certa U, Broger C, Tully T (2003b) The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr Biol 13:286–296

    Article  PubMed  CAS  Google Scholar 

  • Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the bee Apis mellifera. Physiol Entomol 5:343–358

    Google Scholar 

  • Feany MB, Quinn WG (1995) A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science 268:869–873

    Article  PubMed  CAS  Google Scholar 

  • Fiala A, Spall T, Diegelmann S, Eisermann B, Sachse S, Devaud JM, Buchner E, Galizia CG (2002) Genetically expressed cameleon in Drosophila melanogaster is used to visualize olfactory information in projection neurons. Curr Biol 12:1877–1884

    Article  PubMed  CAS  Google Scholar 

  • Folkers E, Waddell S, Quinn WG (2006) The Drosophil radish Gene encodes a+protein required for anesthesia-resistant memory. Proc Natl Acad Sci 103:17496–17500

    Article  PubMed  CAS  Google Scholar 

  • Folkers E, Drain P, Quinn WG (1993) Radish, a Drosophila mutant deficient in consolidated memory. Proc Natl Acad Sci USA 90:8123–8127

    Article  PubMed  CAS  Google Scholar 

  • Grotewiel MS, Beck CD, Wu KH, Zhu XR, Davis RL (1998) Integrin-mediated short-term memory in Drosophila. Nature 391:455–460

    Article  PubMed  CAS  Google Scholar 

  • Han PL, Levin LR, Reed RR, Davis RL (1992) Preferential expression of the Drosophila rutabaga gene in mushroom bodies, neural centers for learning in insects. Neuron 9:619–627

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nature Rev Neurosci 4:266–275

    Article  CAS  Google Scholar 

  • Heisenberg M, Borst A, Wagner S, Byers D (1985) Drosophila mushroom body mutants are deficient in olfactory learning. J Neurogenet 2:1–30

    PubMed  CAS  Google Scholar 

  • Heisenberg M, Wolf R, Brembs B (2001) Flexibility in a single behavioral variable of Drosophila. Learn Mem 8:1–10

    Article  PubMed  CAS  Google Scholar 

  • Isabel G, Pascual A, Preat T (2004) Exclusive consolidated memory phases in Drosophila. Science 304:1024–1027

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Suzuki K, Estes P, Ramaswami M, Yamamoto D, Strausfeld NJ (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem 5:52–77

    PubMed  CAS  Google Scholar 

  • Keene AC, Stratmann M, Keller A, Perrat PN, Vosshall LB, Waddell S (2004) Diverse odor-conditioned memories require uniquely timed dorsal paired medial neuron output. Neuron 44:521–533

    Article  PubMed  CAS  Google Scholar 

  • Kelleher RJ, 3rd, Govindarajan A, Tonegawa S (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44:59–73

    Article  PubMed  CAS  Google Scholar 

  • Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47:81–92

    Article  PubMed  CAS  Google Scholar 

  • Leung B, Waddell S (2004) Four-dimensional gene expression control: memories on the fly. Trends Neurosci 27:511–513

    Article  PubMed  CAS  Google Scholar 

  • Levin LR, Han PL, Hwang PM, Feinstein PG, Davis RL, Reed RR (1992) The Drosophila learning and memory gene rutabaga encodes a Ca2+/Calmodulin-responsive adenylyl cyclase. Cell 68:479–489

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Strausfeld NJ (1997) Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana. J Comp Neurol 387:631–650

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Seiler H, Wen A, Zars T, Ito K, Wolf R, Heisenberg M, Liu L (2006) Distinct memory traces for two visual features in the Drosophila brain. Nature 439:551–556

    Article  PubMed  CAS  Google Scholar 

  • Livingstone MS, Sziber PP, Quinn WG (1984) Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant. Cell 37:205–215

    Article  PubMed  CAS  Google Scholar 

  • McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293:1330–1333

    Article  PubMed  CAS  Google Scholar 

  • McGuire SE, Le PT, Osborn AJ, Matsumoto K, Davis RL (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768

    Article  PubMed  CAS  Google Scholar 

  • Menzel R, Erber J, Masuhr T (1974) Learning and memory in the honeybee. In: Barton-Brown L (ed) Experimental analysis of insect behaviour. Berlin, Germany: Springer, pp 195–217

    Google Scholar 

  • Mohler JD (1977) Developmental genetics of the Drosophila egg. I. Identification of 59 sex-linked cistrons with maternal effects on embryonic development. Genetics 85:259–272

    PubMed  CAS  Google Scholar 

  • Moore MS, DeZazzo J, Luk AY, Tully T, Singh CM, Heberlein U (1998) Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Nighorn A, Healy MJ, Davis RL (1991) The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron 6:455–467

    Article  PubMed  CAS  Google Scholar 

  • Osterwalder T, Yoon KS, White BH, Keshishian H (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci USA 98:12596–12601

    Article  PubMed  CAS  Google Scholar 

  • Pascual A, Preat T (2001) Localization of long-term memory within the Drosophila mushroom body. Science 294:1115–1117

    Article  PubMed  CAS  Google Scholar 

  • Pascual A, Huang KL, Neveu J, Preat T (2004) Neuroanatomy: brain asymmetry and long-term memory. Nature 427:605–606

    Article  PubMed  CAS  Google Scholar 

  • Pascual A, Huang KL, Preat T (2005) Conditional UAS-targeted repression in Drosophila. Nucleic Acids Res 33:e7

    Article  PubMed  Google Scholar 

  • Perazzona B, Isabel G, Preat T, Davis RL (2004) The role of cAMP response element-binding protein in Drosophila long-term memory. J Neurosci 24:8823–8828

    Article  PubMed  CAS  Google Scholar 

  • Quinn WG, Dudai Y (1976) Memory phases in Drosophila. Nature 262:576–577

    Article  PubMed  CAS  Google Scholar 

  • Quinn WG, Harris WA, Benzer S (1974) Conditioned behavior in Drosophila melanogaster. Proc Natl Acad Sci USA 71:708–712

    Article  PubMed  CAS  Google Scholar 

  • Quinn WG, Sziber PP, Booker R (1979) The Drosophila memory mutant amnesiac. Nature 277:212–214

    Article  PubMed  CAS  Google Scholar 

  • Renger JJ, Ueda A, Atwood HL, Govind CK, Wu CF (2000) Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. J Neurosci 20:3980–3992.

    PubMed  CAS  Google Scholar 

  • Riemensperger T, Voller T, Stock P, Buchner E, Fiala A (2005) Punishment prediction by dopaminergic neurons in Drosophila. Curr Biol 15:1953–1960

    Article  PubMed  CAS  Google Scholar 

  • Roman G, Endo K, Zong L, Davis RL (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci USA 98:12602–12607

    Article  PubMed  CAS  Google Scholar 

  • Rosay P, Armstrong JD, Wang Z, Kaiser K (2001) Synchronized neural activity in the Drosophila memory centers and its modulation by amnesiac. Neuron 30:759–770

    Article  PubMed  CAS  Google Scholar 

  • Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK, Fortini ME, Li PW, Apweiler R, Fleischmann W, Cherry JM, Henikoff S, Skupski MP, Misra S, Ashburner M, Birney E, Boguski MS, Brody T, Brokstein P, Celniker SE, Chervitz SA, Coates D, Cravchik A, Gabrielian A, Galle RF, Gelbart WM, George RA, Goldstein LS, Gong F, Guan P, Harris NL, Hay BA, Hoskins RA, Li J, Li Z, Hynes RO, Jones SJ, Kuehl PM, Lemaitre B, Littleton JT, Morrison DK, Mungall C, O’Farrell PH, Pickeral OK, Shue C, Vosshall LB, Zhang J, Zhao Q, Zheng XH, Lewis S (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23:10495–10502

    PubMed  CAS  Google Scholar 

  • Shimada T, Kato K, Kamikouchi A, Ito K (2005) Analysis of the distribution of the brain cells of the fruit fly by an automatic cell counting algorithm. Physica A 350: 144–149

    Article  Google Scholar 

  • Shulman JM, Shulman LM, Weiner WJ, Feany MB (2003) From fruit fly to bedside: translating lessons from Drosophila models of neurodegenerative disease. Curr Opin Neurol 16:443–449

    Article  PubMed  Google Scholar 

  • Skoulakis EM, Davis RL (1996) Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron 17:931–944

    Article  PubMed  CAS  Google Scholar 

  • Skoulakis EM, Kalderon D, Davis RL (1993) Preferential expression in mushroom bodies of the catalytic subunit of protein kinase A and its role in learning and memory. Neuron 11:197–208

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ, Sinakevitch I, Vilinsky I (2003) The mushroom bodies of Drosophila melanogaster: an immunocytological and golgi study of Kenyon cell organization in the calyces and lobes. Microsc Res Tech 62:151–169

    Article  PubMed  Google Scholar 

  • Toba G, Ohsako T, Miyata N, Ohtsuka T, Seong KH, Aigaki T (1999) The gene search system. A method for efficient detection and rapid molecular identification of genes in Drosophila melanogaster. Genetics 151:725–737

    PubMed  CAS  Google Scholar 

  • Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol [A] 157:263–277

    Article  CAS  Google Scholar 

  • Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79:35–47

    Article  PubMed  CAS  Google Scholar 

  • Waddell S, Quinn WG (2001) Flies, genes, and learning. Annu Rev Neurosci 24:1283–1309

    Article  PubMed  CAS  Google Scholar 

  • Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG (2000) The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell 103:805–813

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271–282

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guo HF, Pologruto TA, Hannan F, Hakker I, Svoboda K, Zhong Y (2004) Stereotyped odor-evoked activity in the mushroom body of Drosophila revealed by green fluorescent protein-based Ca2+ imaging. J Neurosci 24:6507–6514

    Article  PubMed  CAS  Google Scholar 

  • Wilson C, Pearson RK, Bellen HJ, O’Kane CJ, Grossniklaus U, Gehring WJ (1989) P-element-mediated enhancer detection: an efficient method for isolating and characterizing developmentally regulated genes in Drosophila. Genes Dev 3:1301–1313

    PubMed  CAS  Google Scholar 

  • Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303:366–370

    Article  PubMed  CAS  Google Scholar 

  • Wolf R, Wittig T, Liu L, Wustmann G, Eyding D, Heisenberg M (1998) Drosophila mushroom bodies are dispensable for visual, tactile, and motor learning. Learn Mem 5:166–178

    PubMed  CAS  Google Scholar 

  • Wright NJ, Zhong Y (1995) Characterization of K+ currents and the cAMP-dependent modulation in cultured Drosophila mushroom body neurons identified by lacZ expression. J Neurosci 15:1025–1034

    PubMed  CAS  Google Scholar 

  • Yang MY, Armstrong JD, Vilinsky I, Strausfeld NJ, Kaiser K (1995) Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron 15:45–54

    Article  PubMed  Google Scholar 

  • Yin JC, Wallach JS, Del Vecchio M, Wilder EL, Zhou H, Quinn WG, Tully T (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79:49–58

    Article  PubMed  CAS  Google Scholar 

  • Yin JC, Del Vecchio M, Zhou H, Tully T (1995a) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81:107–115

    Article  PubMed  CAS  Google Scholar 

  • Yin JC, Wallach JS, Wilder EL, Klingensmith J, Dang D, Perrimon N, Zhou H, Tully T, Quinn WG (1995b) A Drosophila CREB/CREM homolog encodes multiple isoforms, including a cyclic AMP-dependent protein kinase-responsive transcriptional activator and antagonist. Mol Cell Biol 15:5123–5130

    PubMed  CAS  Google Scholar 

  • Yu D, Baird GS, Tsien RY, Davis RL (2003) Detection of calcium transients in Drosophila mushroom body neurons with camgaroo reporters. J Neurosci 23:64–72

    PubMed  Google Scholar 

  • Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron 42:437–449

    Article  PubMed  CAS  Google Scholar 

  • Zars T, Fischer M, Schulz R, Heisenberg M (2000) Localization of a short-term memory in Drosophila. Science 288:672–675

    Article  PubMed  CAS  Google Scholar 

  • Zhong Y, Wu CF (1991) Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Science 251:198–201

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Isabel, G., Comas, D., Preat, T. (2007). From Molecule to Memory System: Genetic Analyses in Drosophila. In: Bontempi, B., Silva, A.J., Christen, Y. (eds) Memories: Molecules and Circuits. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45702-2_3

Download citation

Publish with us

Policies and ethics