Advertisement

Modeling Partially Premixed Turbulent Combustion

  • Marcus Herrmann
  • Bernd Binninger
  • Norbert Peters
  • Julien Réveillon
  • Luc Vervisch
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)

Summary

This paper investigates the process of partially premixed turbulent combustion in situations where the fuel is provided either as a liquid spray or a purely gaseous stream. In the former case, two-dimensional direct numerical simulations in association with a Lagrangian solver for the dispersed vaporizing phase are employed. By varying the spray properties in terms of droplet density and size, many different flame topologies and combustion modes are observed. In the latter case, the flamelet approach for turbulent partially premixed combustion is employed, requiring the definition of appropriate laminar model flames describing the partially premixed flame structure. To this end, direct numerical simulations of purely gaseous laminar triple flames are performed using a reduced ten-step methane/air mechanism. The resulting chemical structure of these triple flames is analyzed and found to be predominantly premixed in nature.

Keywords

Direct Numerical Simulation Mixture Fraction Diffusion Flame Premix Flame Turbulent Combustion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Vervisch, L., Poinsot, T.: Direct numerical simulation of non-premixed turbulent flame. Annu. Rev. Fluid Mech. 30 (1998) 655–692CrossRefMathSciNetGoogle Scholar
  2. [2]
    Favier, V., Vervisch, L., Herrmann, M., Terhoeven, P., Binninger, B., Peters, N.: Numerical simulation of combustion in partially premixed turbulent flows. In Hirschel, E.H., ed.: Numerical Flow Simulation. Notes on Numerical Fluid Mechanics. Vieweg (1998) 203–221Google Scholar
  3. [3]
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge, UK (2000)zbMATHCrossRefGoogle Scholar
  4. [4]
    Herrmann, M., Chen, M., Binninger, B., Peters, N., Favier, V., Réveillon, J., Vervisch, L.: Modeling partially premixed turbulent combustion. In Hirschel, E.H., ed.: Numerical Flow Simulation. Notes on Numerical Fluid Mechanics. Springer, Berlin (2000) 161–180Google Scholar
  5. [5]
    Bray, K.N.C.: The challenges of turbulent combustion. Proc. Combust. Inst. 26 (1996)Google Scholar
  6. [6]
    Chen, M., Herrmann, M., Peters, N.: Flamelet modeling of lifted turbulent methane/air and propane/air jet diffusion flames. Proc. Combust. Inst. 28 (2000)Google Scholar
  7. [7]
    Réveillon, J., Vervisch, L.: Accounting for spray vaporization in non-premixed turbulent combustion modeling: A single droplet model (SDM). Combust. Flame 121 (2000) 75–90CrossRefGoogle Scholar
  8. [8]
    Faeth, G.M.: Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9 (1983) 1–76CrossRefGoogle Scholar
  9. [9]
    Law, C.K.: Recent advances in droplet vaporisation and combustion. Prog. Energy Combust. Sci. 8 (1982) 171–201CrossRefGoogle Scholar
  10. [10]
    Borghi, R.: Background on droplets and sprays. In: Combustion and Turbulence in Two-Phase Flows, Lecture Series 1996–02, Von Karman Institute for Fluid Dynamics (1996)Google Scholar
  11. [11]
    Lele, S.K.: Compact finite difference schemes with spectral like resolution. J. Comput. Phys. 103 (1992) 16–42zbMATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Poinsot, T., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1992) 104–129zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Favier, V., Vervisch, L.: Edge flames and partially premixed combustion in diffusion flame quenching. Accepted for publication in Combust. Flame (2001)Google Scholar
  14. [14]
    Müller, C M., Breitbach, H., Peters, N.: Partially premixed turbulent flame propagation in jet flames. Proc. Combust. Inst. 25 (1994) 1099–1106Google Scholar
  15. [15]
    Peters, N., Williams, F.A.: Lift-off characteristics of turbulent jet diffusion flames. AIAA Journal 21 (1983) 423–429zbMATHCrossRefGoogle Scholar
  16. [16]
    Göttgens, J.: Berechnung einer laminaren Diffusionsflamme mit reduzierter chemischer Kinetik. PhD thesis, RWTH Aachen (1994)Google Scholar
  17. [17]
    Plessing, T., Terhoeven, P., Peters, N.: An experimental and numerical study on a laminar triple flame. Combust. Flame 115 (1998) 335CrossRefGoogle Scholar
  18. [18]
    Smooke, M.D.: Reduced Kinetic Mechanisms and Asymptotic Approximations of Methane-Air Flames. Volume 384. Springer, Berlin (1991)Google Scholar
  19. [19]
    Burcat, A.: Thermochemical data for combustion calculations. In Gardiner, W.C., ed.: Combustion Chemistry. Springer-Verlag, New York (1984) 455–473CrossRefGoogle Scholar
  20. [20]
    Peters, N., Rogg, B.: Reduced kinetic mechanisms for application in combustion systems. In: Lecture Notes in Physics. Springer-Verlag, New York (1993)Google Scholar
  21. [21]
    Ruetsch, G., Vervisch, L., Linan, A.: Effects of heat release on triple flames. Physics of Fluids 7 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Marcus Herrmann
    • 1
  • Bernd Binninger
    • 1
  • Norbert Peters
    • 1
  • Julien Réveillon
    • 2
  • Luc Vervisch
    • 2
  1. 1.Institut für Technische MechanikRWTH AachenAachenGermany
  2. 2.CNRS - CORIA UMR 6614/UniversityINSA de RouenFrance

Personalised recommendations