Advertisement

Development of a 3D Parallel Multigrid Solver for Fast and Accurate Laminar Steady Flame Computations

  • R. Baron
  • S. Paxion
  • O. Gicquel
  • N. Simous
  • P. Bastian
  • D. Thévenin
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)

Summary

An efficient parallel computer code has been developed for fast and accurate laminar steady flame computations at low Mach numbers. It can handle 2D and 3D geometries on locally-refined unstructured grids. Two subsystems are in charge respectively of the low-Mach Navier-Stokes equations and of the thermo-reactive equations, and the resulting, fully coupled, system is solved by time-marching until the steady solution is reached. The linearized equations are solved by a Bi-CGstab algorithm, preconditioned by multigrid cycles. Detailed models are used for chemistry and transport to provide a high level of accuracy. However, a powerful method of simplified chemistry is also available, in order to get easily and at a low cost good starting solutions. Such results can then be used as appropriate starting points for more accurate computations with detailed chemistry and transport.

Keywords

Mass Fraction Flame Front Premix Flame Detailed Chemistry Injection Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T.P. Coffee. Kinetic mechanisms for premixed, laminar, steady state methane/air flames. Combust. Flame, 55:161–170, 1984.CrossRefGoogle Scholar
  2. [2]
    S. Paxion. Développement d’un solveur multigrille non-structuré parallèle pour la simulation de flammes laminaires en chimie et transport complexes. PhD thesis, École Centrale Paris, 1999.Google Scholar
  3. [3]
    P. Bastian, K. Birken, K. Johannsen, N. Neuß, H. Rentz-Reichert, and C. Wieners. UG — a flexible software toolbox for solving partial differential equations. Comp. Vis. Sc., 1:27–40, 1997.zbMATHCrossRefGoogle Scholar
  4. [4]
    N. Neuß. A new sparse matrix storage method for adaptive solving of large systems of reaction-diffusion-transport equations. In Keil, Mackens, Voß, and Werther Eds, editors, Scientific Computing in Chemical Engineering II, pages 175–182. Springer Verlag, 1999.CrossRefGoogle Scholar
  5. [5]
    S. Paxion, R. Baron, A. Gordner, N. Neuß, P. Bastian, D. Thévenin, and G. Wittum. Development of a parallel unstructured multigrid solver for laminar flame simulations with detailed chemistry and transport. Notes on Numerical Fluid Dynamics, in press, Vieweg Verlag, 2001.Google Scholar
  6. [6]
    S. Paxion, R. Baron, A. Gordner, D. Thévenin, and P. Bastian. Development of a parallel multigrid solver to investigate low Mach number reactive flows using detailed chemistry. In 7th Colloquium of the French-German research program on Numerical Flow Simulation, Berlin, Germany, 1999.Google Scholar
  7. [7]
    H.A. Van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Sci. Statist. Comput., 13(n1):631–644, 1992.zbMATHCrossRefGoogle Scholar
  8. [8]
    R.J. Kee, F.M. Rupley, and J.A. Miller. Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Technical Report SAND89–8009B, SANDIA National Laboratories, September 1991.Google Scholar
  9. [9]
    A. Em and V. Giovangigli. EGLIB: A general-purpose Fortran library for multicomponent transport property evaluation. Technical report, CERMICS, 1997.Google Scholar
  10. [10]
    R. Baron, S. Paxion, O. Gicquel, P. Bastian, and D. Thévenin. Parallel multigrid computations of steady laminar flames at low Mach numbers with detailed chemistry. In 8th International Conference on Numerical Combustion, Amelia Island, USA, 2000. SIAM.Google Scholar
  11. [11]
    U. Maas and S. Pope. Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifold. In 24th Symposium (International) on Combustion, pages 103–112. The Combustion Institute, 1992.Google Scholar
  12. [12]
    U. Maas and S. Pope. Simplifying chemical kinetics: Intrinsic lowdimensional manifolds in composition space. Combust. Flame, 88:239–264, 1992.CrossRefGoogle Scholar
  13. [13]
    O. Gicquel. Développement d’une nouvelle méthode de réduction des schémas cinétiques application au méthane. PhD thesis, École Centrale Paris, 1999.Google Scholar
  14. [14]
    O. Gicquel, N. Darabiha, and D. Thévenin. Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Comb. Inst., 28:1901–1908, 2000.CrossRefGoogle Scholar
  15. [15]
    R. Baron, S. Paxion, P. Bastian, O. Gicquel, and D. Thévenin. Towards fast and accurate computations of three-dimensional laminar flames with detailed chemistry and transport. In 28th Symposium (International) on Combustion, work-in-progress poster, Edinburgh (Scotland), 2000. The Combustion Institute.Google Scholar
  16. [16]
    L.M.T. Somers and L.P.H. De Goey. A numerical study of a premixed flame on a slit burner. Combust. Sci. Tech., 108:121–132, 1995.CrossRefGoogle Scholar
  17. [17]
    R. Baron, S. Paxion, and D. Thévenin. Fast and accurate flame computations using detailed chemistry and transport. In 18th International Colloquium on the Dynamics of Explosions and Reactive Systems, pages 036/1–036/5, Seattle, USA, 2001.Google Scholar
  18. [18]
    R. Baron, S. Paxion, O. Gicquel, N. Paxion, P. Bastian, and D. Thévenin. Development of a 3d parallel multigrid solver for fast and accurate laminar steady flame computations. In 8th Colloquium of the French-German research program on Numerical Flow Simulation, Nice, France, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • R. Baron
    • 1
  • S. Paxion
    • 2
  • O. Gicquel
    • 1
  • N. Simous
    • 2
  • P. Bastian
    • 2
  • D. Thévenin
    • 1
  1. 1.Laboratoire d’Energétique Moléculaire et Macroscopique, Combustion (E.M2.C.), CNRS UPR 288Ecole Centrale ParisChâtenay-MalabryFrance
  2. 2.Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (I.W.R.)Universität HeidelbergHeidelbergGermany

Personalised recommendations