Adaptive Multigrid Computations of Multiphase Flows

  • I. Ginzburg
  • G. Wittum
  • S. Zaleski
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)


In this paper we present a 2D Volume of Fluid two phase flow model with surface tension. The model is based on the incompressible Navier -Stokes equations, it uses implicit time stepping, unstructured grids and staggered finite volumes. A cubic spline interface interpolant which preserves the volume fraction distribution is introduced. Interface adaptive and/or interface aligned deformable grids are reconstructed in each time step with help of either a linear or spline interface approximation. Anomalous currents around bubbles are significantly reduced with help of cubic spline interpolants. The simulations of buoyant bubbles are compared with known theoretical, numerical and experimental results.


Regular Grid Unstructured Grid Surface Tension Force Interfacial Cell Regular Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the solution of linear systems: Building blocks for iterative methods. SIAM, 1994.CrossRefGoogle Scholar
  2. [2]
    D. Bhaga and M. E. Weber. Bubbles in viscous liquids: shapes, wakes and velocities. J. Fluid Mech., 105:61, 1992.CrossRefGoogle Scholar
  3. [3]
    R. Clift, J. R. Grace, and M. E. Weber. Bubbles, Drops, and Particles. Academic Press, 1978.Google Scholar
  4. [4]
    R. Collins. A simple model of the plane gas bubble in a finite liquid. J.Fluid Mech., 22:763, 1965.zbMATHCrossRefGoogle Scholar
  5. [5]
    B. J. Daly. A technique for including surface tension effects in hydrodynamic calculations. J. Comput. Phys., 4:97, 1969.zbMATHCrossRefGoogle Scholar
  6. [6]
    D. E. Fyfe, E.S. Oran, and M. J. Fritts. Surface tension and viscosity with lagrangian hydrodynamics on a triangular mesh. J. Comput. Phys., 76:394, 1988.CrossRefGoogle Scholar
  7. [7]
    L. Ginzburg and G. Wittum. Two-phase flows on unstructured grids with spline volume tracking. J. Comput. Phys., 2001.Google Scholar
  8. [8]
    D. Gueyffier, J. Lie, A. Nadim, R. Scardovelli, and S. Zaleski. Volume of fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys., 152:423, 1999.zbMATHCrossRefGoogle Scholar
  9. [9]
    J. G. Hnat and J. D. Buckmaster. Spherical cap bubbles and skirt formation. Phys. Fluids, 19:182, 1976.zbMATHCrossRefGoogle Scholar
  10. [10]
    B. Lafaurie, C. Nardone, R. Scardovelli, and S. Zaleski. Modeling merging and fragmentation in multiphase flows with surfer. J. Comput. Phys., 113:134, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. Li. Calcul d’ interface affine par morceaux. C.R.Acad.Sci.Paris, 320, série IIb:391, 1995.zbMATHGoogle Scholar
  12. [12]
    S. Popinet and S. Zaleski. A front-tracking algorithm for accurate representation of surface tension. Int. J. Numer. Meth. Fluids, 30:775, 1999.zbMATHCrossRefGoogle Scholar
  13. [13]
    W. H. Press, S. A. Teukolsky, W. T. Wetterling, and B. P. Flannnery.Numerical Recipes in C. Cambridge, 1992.zbMATHGoogle Scholar
  14. [14]
    W. J. Rider and D. B. Kothe. Reconstructing volume tracking. J. Comput. Phys., 141:112, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    G. Ryskin and L. G. Leal. Numerical solution of free-boundary problems in fluid mechanics. part 2. buoyancy-driven motion of a gas bubble through a quiescent liquid. J. Fluid Mech., 148:19, 1984.zbMATHCrossRefGoogle Scholar
  16. [16]
    R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech., 31:567, 1999.CrossRefMathSciNetGoogle Scholar
  17. [17]
    G. L. Sleijpen, H. A. vander Vorst, and D. R. Fokkema. Bicgstab(1) and other hybrid bi-cg methods. Numerical Algorithms, 7:75, 1994.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Sussmann and S. Osher P. Smereka. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys., 114:146, 1994.CrossRefGoogle Scholar
  19. [19]
    M. Sussmann and P. Smereka. Axisymmetric free boundary problems. J. Fluid Mech., 341:269, 1997.CrossRefMathSciNetGoogle Scholar
  20. [20]
    S. H. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys., 100:25, 1992.zbMATHCrossRefGoogle Scholar
  21. [21]
    D. L. Youngs. Time-dependent multi-material flow with large fluid distortion. (In Numerical Methods fbr Fluid Dynamics),1986.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • I. Ginzburg
    • 1
  • G. Wittum
    • 2
  • S. Zaleski
    • 3
  1. 1.IWTMUniversität KaiserslauternKaiserslauternGermany
  2. 2.IWR, INF 368Universität HeidelbergHeidelbergGermany
  3. 3.Laboratoire de Modélisation en MécaniqueUniversité Pierre et Marie CurieParisFrance

Personalised recommendations