Advertisement

High Performance Computer Codes and their Application to Optimize Crystal Growth Processes, III

  • O. Czarny
  • P. Droll
  • M. El Ganaoui
  • B. Fischer
  • M. Hainke
  • L. Kadinski
  • P. Kaufmann
  • K. Krastev
  • E. Mešgić
  • M. Metzger
  • I. Raspo
  • E. Serre
  • P. Bontoux
  • E. Durst
  • G. Müller
  • M. Schäfer
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)

Summary

The rapid development on the information technology market implies a growing demand in quantity and quality of semiconductor and optical crystalline material. For the correlated process development and optimization, numerical simulation is playing an essential role, with the necessity for further improvement of numerical techniques and capacities. The collaborative work presented in this paper numerically deals with important issues in the field of crystal growth like global simulation of bulk crystal growth and vapor phase epitaxy, phase transition problems, as well as new methods for high performance three-dimensional flow simulation. The different numerical codes applied were developed in a complementary way to cover a wide range of aspects important for crystal growth.

Keywords

Crystal Growth Nusselt Number Rayleigh Number Vortex Breakdown Crystal Growth Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Droll, M. El Ganaoui, L. Kadinski, M. Kurz, A. Lamazouade, O. Louchart, D. Morvan, M. Naamoune, A. Pusztai, I. Raspo, P. Bontoux, F. Durst, G. Müller, J. Ouazzani, M. Schäfer: “High Performance Computer Codes and their Application to Optimize Crystal Growth Processes”. In E. H. Hirschel (ed.), Numerical Flow Simulation I, Notes on Numerical Fluid Mechanics vol. 66, Vieweg, 1998, pp.115–143.Google Scholar
  2. [2]
    A. Degenhardt, P. Droll, M. El Ganaoui, L. Kadinski, M. Kurz, A. Lamazouade, D. Morvan, I. Raspo, E. Serre, P. Bontoux, E Durst, G. Müller, M. Schafer: ”High Performance Computer Codes and their Application to Optimize Crystal Growth Processes, II”. In E. H. Hirschel (ed.), Numerical Simulation of Flows II, L. N. Physics, Springer, 2001, pp.69–97.Google Scholar
  3. [3]
    G. Müller: “Melt growth of semiconductors”. Materials Science Forum 276–277, 1998, pp. 87–108.CrossRefGoogle Scholar
  4. [4]
    S. R. Idelsohn, M. A. Storti, L. A. Crivelli: “Numerical methods in phase-change problems”. Archives of Computational Methods in Engineering 1, 1994, pp. 49–74.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Y. Stry, M. Hainke, T. Jung: “Comparison of linear and quadratic shape functions for a hybride control-volume finite element method”. Submitted to Int. J. Num. Meth. Heat Fluid Flow.Google Scholar
  6. [6]
    M. Hortmann, M. Perié, G. Scheuerer: “Finite volume multigrid prediction of laminar natural convection: bench-mark solutions”. Int. J. Numer. Meth. Fluids 11, 1990, pp. 189–207.zbMATHCrossRefGoogle Scholar
  7. [7]
    P. Spelluci, Numerische Verfahren der nichtlinearen Optimierung, Birkhäuser Verlag, 1993.CrossRefGoogle Scholar
  8. [8]
    M. Metzger, Optimal Control of Industrial Crystal Growth Processes, PhD thesis, University Erlangen-Nürnberg, 2000.Google Scholar
  9. [9]
    M. Metzger, R. Backofen: “Optimal temperature profiles for annealing of GaAscrystals”. J. Crystal Growth 220, 2000, 6–15.CrossRefGoogle Scholar
  10. [10]
    M. Metzger: “Optimal control of crystal growth processes”. J. Crystal Growth 230, 2001, 210–216.CrossRefGoogle Scholar
  11. [11]
    P. Droll, M. Schäfer, E. Serre, P. Bontoux: “An implicit pseudospectrl multi-domain method for the simulation of incompressible flows”. Submitted to Int. J. for Num. Meth. in Fluids.Google Scholar
  12. [12]
    J. H. Bramble, J. E. Pasciak, A. H. Schatz: “The construction of preconditioners for elliptic problems by substructuring I”. Mathematics of Computation 47,1986, pp. 103–134.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Haldenwang, G. Labrosse, S. Abboudi, M. Deville: “Chebyshev 3d spectral and 2d pseudospectral solvers for the Helmholtz equation”. J. of Comp. Physics 55, 1984, pp. 115–128.zbMATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    S. Hugues, A. Randriamampianina: “An improved projection scheme applied to pseudospectral methods for the incompressible Navier-Stokes equations”. Int. J. for Num. Meth. in Fluids 28, 1998, pp. 501–521.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Van Kan: “A second-order accurate pressure-correction scheme for viscous incompressible flow” SIAM. J. Sci. Stat. Comp. 7, 1986, pp. 870–891.zbMATHCrossRefGoogle Scholar
  16. [16]
    P. M. Gresho: “On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix, part 1: Theory”. Int. J. Numer. Meth. Fluids 11, 1990, pp. 587–620.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    S. Turek: “Efficient solvers for incompressible flow problems”. Vol. 5 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, 1999.Google Scholar
  18. [18]
    M. Schäfer, S. Turek: “Benchmark computations of laminar flow around a cylinder”. In E. H. Hirschel et al. (ed.), Flow Simulation with High-Performance Computers II, Notes on Numerical Fluid Mechanics, 1996, pp. 547–566.CrossRefGoogle Scholar
  19. [19]
    M. P. Escudier: “Observations of the flow produced in a cylindrical container by a rotating end wall”. Exps. Fluids 2, 1984, pp. 179–186.CrossRefGoogle Scholar
  20. [20]
    A. Spohn, M. Mory, E. J. Hopfinger: “Experiments on vortex breakdowm in a confined flow generated by a rotatin disc”. J. Fluid Mech. 370, 1998,pp. 73–99.zbMATHCrossRefGoogle Scholar
  21. [21]
    K. Fujimara, H. S. Koyama H., J. M. Hyun: “Time dependent vortex breakdown in a cylinder with a rotating lid”. ASME J. Fluids Engrg. 119, 1997, pp. 450–453.CrossRefGoogle Scholar
  22. [22]
    O. Daube, J. N. Sorensen: “Simulation numérique de l’écoulement périodique axisymétrique dans une cavité cylindrique”. C. R. Acad. Sci. Série II b 308, 1989, pp. 463–469.zbMATHGoogle Scholar
  23. [23]
    J. N. Sorensen, E. A. Christensen: “Direct numerical simulation of rotating fluid flow in a closed cylinder”. Phys. of Fluids 7, 1995, pp. 764–778.CrossRefGoogle Scholar
  24. [24]
    J. L. Stevens, J. M. Lopez, B. J. Cantwell: “Oscillatory flow states in an enclosed cylinder with a rotating endwall”. J. Fluid Mech. 389, 1999, pp. 101–118.zbMATHCrossRefGoogle Scholar
  25. [25]
    F. Sotiroupolos, Y. Ventikos: “The three-dimensional structure of confined swirling flows with vortex breakdown”. J. Fluid Mech. 426, 2001, pp. 155–175.CrossRefGoogle Scholar
  26. [26]
    J. C. E Pereira, J. M. M. Sousa: “Confined vortex breakdown generated by a rotating cone”. J. Fluid Mech. 385, 1999, pp. 287–323.zbMATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    H. M. Blackburn, J. M. Lopez: “Symmetry breaking of the flow in a cylinder by a rotating end wall”. Phys. of Fluids 12, 2000, pp. 2698–2701.CrossRefGoogle Scholar
  28. [28]
    E. Serre, J. P. Pulicani: “A 3D pseudospectral method for convection in a rotating cylinder”. Computers and Fluids 30, 2001, pp. 491–519.zbMATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    P. R. Fenstermacher, H. L. Swirmey, J. P. Gollub J.P: “Dynamical instabilities and the transition to chaotic Taylor vortex flow”. J. Fluid Mech. 94, 1979, pp. 103–128.CrossRefGoogle Scholar
  30. [30]
    C. D. Andereck, S. S. Liu, H. L. Swinney: “Flow regimes in a circular Couette system with independently rotating cylinders”. J Fluid Mech. 164, 1986, pp. 155–183.CrossRefGoogle Scholar
  31. [31]
    C. L. Street, M. Y. Hussaini: “A numerical simulation of the appearance of chaos in finite-length Taylor-Couette flow”. Appl. Numer.Math. 7, 1991, pp. 41–71.CrossRefGoogle Scholar
  32. [32]
    E. Serre, E. Crespo Del Arco, P. Bontoux: “Annular and spiral patterns in flows between rotating and stationary discs” J. Fluid Mech. 434, 2001, pp. 65–100.zbMATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    V. R. Voller, C. Prakash: “A fixed grid numerical modelling methodology for convectiondiffusion mushy region phase-change problems”. Int. J. Heat Mass Transfer 30, 1987, pp. 1709–1719.CrossRefGoogle Scholar
  34. [34]
    W. D. Bennon, E P. Incropera: “A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems: 1 model formulation”. Int. J. Heat Mass Transfer 30, 1987, 2161–2170.zbMATHCrossRefGoogle Scholar
  35. [35]
    G. H. Yeoh, G. de Vahl Davis, E. Leonardi, H. C. de Groh III, M. Yao: “A numerical and experimental study of natural convection and interface shape in crystal growth”. J. of Crystal Growth 173, 1997, pp. 492–502.CrossRefGoogle Scholar
  36. [36]
    J. E. Simpson, H. C. De Groh III, S. V. Garimella: “Directional solidification of pure succinonitrile and a Succinonitrile-Acetone alloy”. NASA/TM-1999–209381, 1999.Google Scholar
  37. [37]
    M. Cruchaga, M. El Ganaoui: “Numerical simulation of the natural convection in a horizontal bridgman apparatus using finite elements finite volumes approximations”. Under preparation, 2001.Google Scholar
  38. [38]
    C. Beckermann, R. Viskanta: “Effect of solid supercooling on natural convection melting of a pure metal”. J. Heat Transfer 111, 1989, pp. 416–424.CrossRefGoogle Scholar
  39. [39]
    K. H. Winters: “Oscillatory convection in liquid metals in a horizontal temperature gradient”. Int. J. Numer. Meth. Eng. 25, 1988, pp. 401–414.zbMATHCrossRefGoogle Scholar
  40. [40]
    J. P. Pulicani, E. Crespo del Arco, A. Randriamampianina, P. Bontoux, R. Peyret: “Spectral simulations of oscillatory convection at low Prandtl number”. Int. J. Numer. Meth. Fluids 10, 1990, pp. 481–517.zbMATHCrossRefGoogle Scholar
  41. [41]
    C. W. Lan, M. K. Chen, M. C. Liang: “Bifurcation and stability analyses of horizontal Bridgman crystal growth of a low Prandtl number material”. J. Crystal Growth 187, 1998, pp. 303–313.CrossRefGoogle Scholar
  42. [42]
    T. Nakano, Y. Nakano, Y. Schimogali: “Kinetic ellipsometry measurement of InGaP/GaAs hetero-interface formation in MOVPE”. J. Cryst. Growth 221, 2000, pp. 136–141.CrossRefGoogle Scholar
  43. [43]
    T. Ohori, M. Takechi, M. Suzuki, M. Takikawa, J. Komeno: J. Cryst. Growth 93, 1988, pp. 905.CrossRefGoogle Scholar
  44. [44]
    G. B. Stringfellow: “Organometallic Vapor-Phase Epitaxy: Theory and Practice”. 2nd ed., Academic Press, San Diego, 1999.Google Scholar
  45. [45]
    R. ‘A. Talalev, E. V. Yakovlev, S. Yu. Karpov, Yu. N. Makarov, O. Schoen, M. Hueken, G. Strauch, H. Juergensen: “Modeling of InGaN MOVPE in AIX 200 reactor and AIX 2000 HT planetary reactor”. MRS Internet J. Nitride Semicond. Res. 4, paper 5, 1999.Google Scholar
  46. [46]
    M. G. Jacko, S. J. W. Price: Can. J. Chem. 42, 1964, pp. 1198.CrossRefGoogle Scholar
  47. [47]
    M. G. Jacko, S. J. W. Price: Can. J. Chem. 41, 1963, pp. 1560.CrossRefGoogle Scholar
  48. [48]
    G. B. Stringfellow: In W.T. Tsang (ed.), Semiconductors and Semimetals 22A, Academic Press, Orlando, 1985, pp. 209–259.Google Scholar
  49. [49]
    P. Kurpas, E. Richter, M. Sato, E Brunner, D. Gutsche, M. Weyers: “MOVPE growth of GaInP/GaAs Hetero-Bipolar-Transistors using CBr4 as carbon dopant source”. J. Cryst. Growth 170, 1997, pp. 442–446.CrossRefGoogle Scholar
  50. [50]
    L. Kadinski, P. Kaufmann, C. Lindner, E. Durst: “3D block-structured grid algorithms for the numerical simulation of chemical vapor deposition in horizontal reactors”. Proc. 3rd Int. FORTWIHR Conf. on HPSEC, March 12–14, 2001, Erlangen, Germany. To be published in M. Breuer, F. Durst, C. Zenger (eds.), Lecture Notes in Computational Science and Engineering Computing 21, Springer, 2002.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • O. Czarny
    • 5
  • P. Droll
    • 1
  • M. El Ganaoui
    • 4
  • B. Fischer
    • 3
  • M. Hainke
    • 3
  • L. Kadinski
    • 2
  • P. Kaufmann
    • 2
  • K. Krastev
    • 1
  • E. Mešgić
    • 2
  • M. Metzger
    • 3
  • I. Raspo
    • 5
  • E. Serre
    • 5
  • P. Bontoux
    • 5
  • E. Durst
    • 2
  • G. Müller
    • 3
  • M. Schäfer
    • 1
  1. 1.Fachgebiet Numerische Berechnungsverfahren im MaschinenbauTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Lehrstuhl für StrömungsmechanikUniversität Erlangen-NürnbergErlangenGermany
  3. 3.Kristallabor, Institut für Werkstoffwissenschaften VIUniversität Erlangen-NürnbergErlangenGermany
  4. 4.Sciences des Procédés Céramiques et Traitment de Surface (SPCTS)UMR 66 38 CNRS-Université de LimogesLimogesFrance
  5. 5.Laboratoire Modélisation Simulation Numérique en Mécanique, CNRSUniversité d’Aix-Marseille, IMT-Château-GombertMarseille cedex 20France

Personalised recommendations