Advertisement

Development of Navier-Stokes Solvers on Hybrid Grids

  • D. Häne
  • A. Dervieux
  • O. Gloth
  • L. Fournier
  • S. Lanteri
  • R. Vilsmeier
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)

Summary

The paper presents common developments of solution methods for conservation laws on unstructured, hybrid grids. A time-accurate dual time stepping method for low Mach number flow is presented. A parallel, linear multigrid method has been developed for applications to complex flows. Finally a new approach for generating hybrid grids, based on level set methods is described.

Keywords

Mach Number Cartesian Grid Surface Node Corner Node Artificial Compressibility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Karypis et. al. Family of multilevel partitioning algorithms. Online: http://wwwusers.cs.umn.edu/ karypis/metis/ A collection of papers is available online, 1998 – 2001.Google Scholar
  2. [2]
    E. Turkel: Preconditioned Methods for Solving the Incompressible and Low Speed Compressible Equations, JCP,vol.72, pp 277 – 298, (1987).Google Scholar
  3. [3]
    A. J. Chorin: A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, Vol 2, 12–26 (1967).zbMATHCrossRefGoogle Scholar
  4. [4]
    M. Breuer, D. Hanel: A Dual Time-Stepping Method for 3-D, Viscous, Incompressible Vortex Flow. Computer & Fluids, vol. 22, pp. 467–484, (1993).zbMATHCrossRefGoogle Scholar
  5. [5]
    D. Hanel, A. Dervieux, R. Vilsmeier, O. Gloth, C. Viozat, and L. Fournier. Development of Navier-Stokes solvers on hybrid grids. Notes on Numerical Fluid Mechanics, 66:89– 111, 1998.MathSciNetGoogle Scholar
  6. [6]
    E. Schall, C. Viozat, B. Koobus and A. Dervieux, Computation of low Mach thermical flows with implicit upwind methods, INRIA report, (2002).Google Scholar
  7. [7]
    D. Hänel, A. Dervieux, O. Gloth, L. Fournier, S. Lanteri, and R. Vilsmeier. Development of Navier-Stokes solvers on hybrid grids. Notes on Numerical Fluid Mechanics, 75:49–66, 2001.Google Scholar
  8. [8]
    M. H. Lallemand, H. Steve, and A. Dervieux. Unstructured multigridding by volume agglomeration: current status. Computers and Fluids, 21:397–443, 1992.zbMATHCrossRefGoogle Scholar
  9. [9]
    D. J. Mavriplis and V. Venkatakrishnan. Agglomeration multigrid solver for two dimensional viscous flows. Int. J. of Comp. Physics, 24:553–570, 1995.zbMATHGoogle Scholar
  10. [10]
    G. Carré. An implicit multigrid method by agglomeration applied to turbulent flows. Computer & Fluids, 26:299–320, 1997.zbMATHCrossRefGoogle Scholar
  11. [11]
    D. J. Mavriplis. Directional agglomeration multigrid techniques for high-Reynolds number viscous flows. ICASE tech. report, 98–6, 1998.Google Scholar
  12. [12]
    J. Francescatto and A. Dervieux. A semi-coarsening strategy for unstructured multigrid based on agglomeration. Int. J. Numer Meth. in Fluids, 26:927–957, 1998.zbMATHCrossRefGoogle Scholar
  13. [13]
    D. J. Mavriplis and V. Venkatalkrishnan. A 3d agglomeration multigrid solver for the Reynolds-average Navier-Stokes equations on unstructure meshes. Int. J. for Num. Meth. in Fluids, 23:527–544, 1996.zbMATHCrossRefGoogle Scholar
  14. [14]
    G. Carré and S. Lanteri. Parallel linear multigrid by agglomeration for the acceleration of 3-d compressible flow calculations on unstructured meshes. Numerical Algorithms, 24:309–332, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    S. Osher and J.A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton—Jacobi formulations. J. of Comp. Physics, 79:12–49, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    Mulder, Osher, and Sethian. Computing interface motion in compressible gas dynamics. J. Comp. Phys., 100:209–228, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. J. Comp. Phys., 114:146–159, 1994.zbMATHCrossRefGoogle Scholar
  18. [18]
    J. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1999.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • D. Häne
    • 1
  • A. Dervieux
    • 2
  • O. Gloth
    • 1
  • L. Fournier
    • 2
  • S. Lanteri
    • 2
  • R. Vilsmeier
    • 1
  1. 1.Inst. for Combustion and Gas-dynamics, Fak. MaschinenbauUniv. of DuisburgDuisburgGermany
  2. 2.INRIASophia-AntipolisFrance

Personalised recommendations