Advertisement

Self-Organizing Hybrid Cartesian Grid Generation and Application to External and Internal Flow Problems

  • Frank Deister
  • Frederic Waymel
  • Ernst Heinrich Hirschel
  • Francois Monnoyer
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)

Summary

An automatic adaptive hybrid Cartesian grid generation and simulation system is presented together with applications. The primary computational grid is an octree Cartesian grid. A quasi-prismatic grid may be added for resolving the boundary layer region of viscous flow around the solid body. For external flow simulations the flow solver TAU from the “Deutsche Zentrum für Luft- und Raumfahrt (DLR)” is integrated in the simulation system. Coarse grids are generated automatically, which are required by the multilevel method. As an application to an internal problem the thermal and dynamic modeling of a subway station is presented.

Keywords

Coarse Grid Cartesian Grid Grid Generation Subway Station Surface Triangulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Deister, E.H. Hirschel: “Self-Organizing Hybrid Cartesian Grid/Solution System for Arbitrary Geometries”. Aiaa-paper 2000–4406, 2000.Google Scholar
  2. [2]
    F. Deister, D. Rocher, E.H. Hirschel, F. Monnoyer: “Self-Organizing Hybrid Cartesian Grid Generation and Solutions for Arbitrary Geometries”. Numerical Flow Simulation Ii, Cnrs-Dfg Collaborative Research Programme, Results 1998–2000 (E.H. Hirschel, ed.). Volume 75 of Notes on Numerical Fluid Mechanics,Springer Verlag, Berlin/Heidelberg/New York, 2001: pp. 19–33.Google Scholar
  3. [3]
    F. Deister: “Selbstorganisierendes hybrid-kartesisches Netzverfahren zur Berechnung von Strömungen um komplexe Konfigurationen”. PhD thesis, Universität Stuttgart, 2001.Google Scholar
  4. [4]
    F. Deister, E. H. Hirschel: “Self-Organizing Hybrid Cartesian Grid/Solution System with Multigrid”. Aiaa-paper 2002–0112, 2002.Google Scholar
  5. [5]
    M.J. Aftosmis, M.J. Berger, G. Adomavicius: “A Parallel Multilevel Method for Adaptively Refined Cartesian Grids with Embedded Boundaries”. Aiaa-paper 2000–0808.Google Scholar
  6. [6]
    D. Schwamborn, T. Gerhold, R. Kessler: “The Dlr Tau Code — An Overview”. Onera Dlr Aerospace Symposium, Proceedings Odas ’99. 1999.Google Scholar
  7. [7]
    M.J.-P. William-Louis, A. Ould-El-Hadrami, C. Tournier: “On the Calculation of the Unsteady Compressible Flow Through a N-Branch Junction”. Procs Instn. Mech. Engrs. (Imeche), Part C, Volume 212, 1998, pp. 49–56.CrossRefGoogle Scholar
  8. [8]
    F. Waymel, F. Monnoyer, M.J.-P. William-Louis: “Thermal and Dynamic Modelling of Subway Stations”. Eccomas Cfd 2001, Eccomas (Ed), 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Frank Deister
    • 1
  • Frederic Waymel
    • 2
  • Ernst Heinrich Hirschel
    • 1
  • Francois Monnoyer
    • 2
  1. 1.IAGUniversität StuttgartStuttgartGermany
  2. 2.LMEUniversité de ValenciennesValenciennes CedexFrance

Personalised recommendations