Large-eddy simulations of the spatial development of a shearless turbulence mixing layer

  • H. Wengle
  • R. Schiestel
  • I. Befeno
  • A. Meri
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)


Results from large-eddy simulations (LES) of the spatial development of a shearless turbulence mixing layer are presented. The study is related to the mixing of two turbulent fields having different dominant length scales and levels of turbulent kinetic energy (excluding the effects of mean shear). In a French-German cooperation, different ways of providing proper inflow conditions are investigated: On the French side, an analytical pseudo-random inflow condition was created, and the spatial development of the mixing layer was calculated on a coarse grid using a newly developed two-equation subgrid scale model. On the German side, the inflow condition was provided by numerically simulating the effects of the two different parallel bar grids used in the experiment and the spatial development of the mixing layer was carried out on a very fine grid, together with the classical Smagorinsky subgrid scale model. The best results from LES on both sides show good mutual agreement as well as good agreement with experimental data from Veeravalli and Warhaft [1].


Turbulent Kinetic Energy Coarse Grid Fine Grid Spatial Development Subgrid Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Veeravalli and Z. Warhaft. The shearless turbulence mixing layer. JFluid Mech., 207:191–229, 1989.CrossRefGoogle Scholar
  2. [2]
    L. Shao, J.P. Bertoglio, and M. Michard. Large eddy simulation of the interaction between two distinct turbulent velocity scales. Advances in Turbulence 3, 3:101–112, 1991.CrossRefGoogle Scholar
  3. [3]
    D.A. Briggs, J.H. Ferziger, J.R. Koseff, and S.G. Monismith. Entrainment in a shearfree turbulent mixing layer. In Application of direct and large-eddy simulation to transition and turbulence, pp. 22/1–22/18. AGARD Conference Proceedings Vol. 551, 1994.Google Scholar
  4. [4]
    Ph. Roy. Resolution des equations de Navier-Stokes par un schema de haute precision en espace et en temps. La Recherche Aerospatiale, 6:373–385, 1980.Google Scholar
  5. [5]
    C. Cambon, L.J. Jacquin, and J.L. Lubrano. Towards a new Reynolds stress model for rotating turbulent flows. Phys.Fluids A, 4:812–824, 1992.zbMATHCrossRefGoogle Scholar
  6. [6]
    S.C. Kassinos, W.C. Reynolds, and M.M. Rogers. One-point turbulence tensors. J. Fluid Mech., 428:213–248, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    A. Dejoan and R. Schiestel. Simulation de grandes échelles en écoulement turbulent soumis à des perturbations instationnaires. Toulouse, 30 aout — 3 septembre 1999. 14e Congres Francais de Mécanique.Google Scholar
  8. [8]
    W.P. Jones and B.E. Launder. The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer, 15:301–314, 1972.CrossRefGoogle Scholar
  9. [9]
    R. Schiestel and S. Viazzo. A Hermitian-Fourier numerical methods for solving the incompressible Navier-Stokes equations. Int.J. Computers and Fluids, 24:739–752, 1995.zbMATHCrossRefGoogle Scholar
  10. [10]
    J. Magnaudet. Modelling of inhomogeneous turbulence in the absence of mean velocity gradients. Appl. Sci. Res., 51:525–531, 1993.zbMATHCrossRefGoogle Scholar
  11. [11]
    A. Meri, H. Wengle, and R. Schiestel. DNS and LES of a backward-facing step flow using 2nd- and 4th-order spatial discretization and LES of the spatial development of mixing of turbulent streams with non-equilibrium inflow conditions. In E.H. Hirschel, editor, ‘Numerical Flow Simulation II’, pp. 268–287, Notes on Numerical Fluid Mechanics, Vol.75, Vieweg, 2001.Google Scholar
  12. [12]
    A. Meni, H. Wengle, M. Raddaoui, P. Chauve, and R. Schiestel. Large-eddy simulation of non-equilibrium inflow conditions and of the spatial development of a confined plane jet with co-flowing streams. In W. Rodi and D. Laurence, editors, Engineering Turbulence Modelling and Experiments 4, pp. 197–206. Elsevier, Amsterdam, 1999.Google Scholar
  13. [13]
    A. Mer, H. Wengle, A. Dejoan, Védy E., and R. Schiestel. Application of a 4th-order Hermitian scheme for non-equidistant grids to LES and DNS of incompressible fluid flow. In E.H. Hirschel, editor, ‘Numerical Flow Simulation l’, pages 382–406, Notes on Numerical Fluid Mechanics, Vol.66, Vieweg, 1998.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • H. Wengle
    • 1
  • R. Schiestel
    • 2
  • I. Befeno
    • 2
  • A. Meri
    • 1
  1. 1.Institut für Strömungsmechanik u. Aerodynamik, LRT/WE 7Universität der Bundeswehr MünchenNeubibergGermany
  2. 2.Institut de Recherche sur les Phénomènes Hors Équilibre, IRPHE, UMR 6594 CNRSUniversités d’Aix-Marseille I & IIMarseille Cedex 13France

Personalised recommendations