Coherent Vortex Simulation (CVS) of 2D bluff body flows using an adaptive wavelet method with penalisation

  • Kai Schneider
  • Marie Farge
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)


In this paper we present an adaptive wavelet method to integrate the velocity-vorticity formulation of the two-dimensional Navier-Stokes equations coupled with a penalisation technique to handle easily solid boundaries of arbitrary shape. The validity of this method, called Coherent Vortex Simulation (CVS), is demonstrated by computing flows past different bluff bodies. Firstly, we show the computation of a flow around an impulsively started cylinder at Reynolds number 3000. The results are compared with those of a DNS using a spectral method and with others computed with two different vortex methods. Secondly, we also present simulations of a flow around a NACA air-foil profile at Reynolds number 1000.


Direct Numerical Simulation Wavelet Coefficient Bluff Body Vortex Method Orthonormal Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Angot, C.H. Bruneau and P. Fabrie. A penalisation method to take into account obstacles in viscous flows. Numer Math., 81, 497–520, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    E. Arquis and J.P. Caltagirone. Sur les conditions hydrodynamique au voisinage d’une interface millieux fluide-millieu poreux: application à la convection naturelle. C. R. Acad. Sci. Paris, 299, 1–4, 1984.Google Scholar
  3. [3]
    C. Beta, K. Schneider and M. Farge. CVS filtering to study mixing in 2D isotropic turbulence. Preprint LMD ENS-Paris, December 2001, Phys. Rev. Lett., submitted.Google Scholar
  4. [4]
    Ph. Charton and V. Perrier. A Pseudo—Wavelet Scheme for the Two-Dimensional Navier—Stokes Equations. Matemática Aplicada e Computacional, 15, 139–160, 1996.MathSciNetzbMATHGoogle Scholar
  5. [5]
    M. Farge. Wavelet transforms and their applications to turbulence, Ann. Rev. Fluid Mech., 24, 395–457, 1992.MathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Farge, K. Schneider and N. Kevlahan. Non—Gaussianity and Coherent Vortex Simulation for two—dimensional turbulence using an adaptive orthonormal wavelet basis. Phys. Fluids, 11(8), 2187–2201, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M. Farge, G. Pellegrino and K. Schneider. Coherent Vortex Extraction in 3D Turbulent Flows using orthogonal wavelets. Phys. Rev. Lett., 87(5), 45011–45014, 2001.CrossRefGoogle Scholar
  8. [8]
    M. Farge and K. Schneider. Coherent Vortex Simulation (CVS), a semi—deterministic turbulence model using wavelets. Flow, Turbulence and Combustion, 66(4), 393–426, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    M. Forestier, R. Pasquetti and R. Peyret. Calculations of 3D wakes in stratified fluids. ECCOMAS, 2000.Google Scholar
  10. [10]
    J. Fröhlich and K. Schneider. Numerical simulation of decaying turbulence in an adaptive wavelet basis. Appl. Comput. Harm. Anal. 3, 393–397, 1996.zbMATHCrossRefGoogle Scholar
  11. [11]
    J. Fröhlich and K. Schneider. An adaptive wavelet—vaguelette algorithm for the solution of PDEs. J. Comput. Phys. 130, 174–190, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    N. Kevlahan and J.-M. Ghidaglia. Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. Eur J. Mech./B, 20, 333–350, 2001.zbMATHCrossRefGoogle Scholar
  13. [13]
    K. Khadra, S. Parneix, P. Angot and J.-P. Caltagirone. Fictious domain approach for numerical modelling of Navier—Stokes equations. Int. J. Num. Meth. Fluids, 34, 651– 684, 2000.zbMATHCrossRefGoogle Scholar
  14. [14]
    P. Koumoutsakos and A. Leonard. High resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech., 296, 1–38, 1995.zbMATHCrossRefGoogle Scholar
  15. [15]
    C. Meneveau. Analysis of turbulence in the orthonormal wavelet representation. J. Fluid Mech., 232, 469, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    K. Schneider and M. Farge. Computing and analysing turbulent flows using wavelets. Wavelet Transforms and Time—Frequency Signal Analysis (Ed. L. Debnath), Birkhäuser, 181–216, 2001.CrossRefGoogle Scholar
  17. [17]
    K. Schneider and M. Farge. Numerical simulation of a mixing layer in an adaptive wavelet basis. C. R. Acad. Sci. Paris Série II, 328, 263–269, 2000.zbMATHGoogle Scholar
  18. [18]
    K. Schneider, M. Farge, E Koster and M. Griebel. Adaptive wavelet methods for the Navier—Stokes equations. Notes on Numerical Fluid Mechanics (Ed. E. H. Hirschel), 75, Springer, 303–318, 2001.Google Scholar
  19. [19]
    K. Schneider and M. Farge. Adaptive wavelet simulation of a flow around an impulsively started cylinder using penalisation. Appl. Comput. Harm. Anal., accepted.Google Scholar
  20. [20]
    K. Schneider. An adaptive wavelet method for 2D turbulence in complex geometries. Preprint. CMI Université de Provence, Marseille 2001.Google Scholar
  21. [21]
    K. Schneider. Modélisation et simulation numérique en base d’ondelettes adaptative, applications en mécanique des fluides et en combustion. Habilitation thesis. Université Louis Pasteur Strasbourg, 2001.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Kai Schneider
    • 1
    • 3
  • Marie Farge
    • 2
  1. 1.Laboratoire de Modélisation et Simulation Numérique en Mécanique du CNRS & Centre de Mathématiques et d’InformatiqueUniversité de ProvenceMarseille Cedex 9France
  2. 2.Laboratoire de Météorologie Dynamique du CNRSEcole Normale SupérieureParis Cedex 05France
  3. 3.Institut für Chemischen TechnikUniversität Karlsruhe (TH)Germany

Personalised recommendations