Advertisement

Direct versus statistical simulation of accelerated/retarded and separating/reattaching turbulent boundary layers

  • M. Manhart
  • R. Friedrich
  • G. Deng
  • J. Piquet
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)

Summary

Direct and statistical simulations have been performed in order to demonstrate their strengths and weaknesses in complex turbulent flow situations. The first flow to be predicted is Watmuff’s [20] favourable/adverse pressure gradient boundary layer at a Reynolds number of 670, based on inlet momentum thickness and freestream velocity. The second case is a separating/reattaching turbulent boundary layer which has been investigated experimentally by Kalter and Fernholz [4] at Re θ = 1500. Results for global and local statistical quantities are compared. They underline the need to use sophisticated turbulence models for reliable prediction of complex flows.

Keywords

Direct Numerical Simulation Turbulent Boundary Layer Separation Bubble Adverse Pressure Gradient Skin Friction Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chen, H., Patel, V., 1987. Practical near-wall turbulence models for complex flows including separation. 87–1300.Google Scholar
  2. [2]
    Coles, D., 1962. The turbulent boundary layer in a compressible fluid. In: Report R-403-PR. The Rand Corporation, Santa Monica, CA.Google Scholar
  3. [3]
    Hirt, C., Nichols, B., Romero, N., 1975. Sola — a numerical solution algorithm for transient fluid flows. In: Los Alamos Sci. Lab. Los Alamos.Google Scholar
  4. [4]
    Kalter, M., Fernholz, H., 1994. The influence of free-stream turbulence on an axisymmetric turbulent boundary layer in, and relaxing from, an adverse pressure gradient. In: 5. European turbulence conference, Siena 1994.Google Scholar
  5. [5]
    Lund, T., Wu, X., Squires, K., 1998. Generation of turbulent inflow data for spatiallydeveloping boundary layer simulations. J. Comp. Phys 140, 233–258.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    Manhart, M., 1998. Zonal direct numerical simulation of turbulent plane channel flow. In: Friedrich, R., Bontoux, R (Eds.), Computation and visualization of three-dimensional vortical and turbulent flows. Proceedings of the Fifth CNRS/DFG Workshop on Numerical Flow Simulation. Vol. 64 of Notes on Numerical Fluid Mechanics. Vieweg Verlag.Google Scholar
  7. [7]
    Manhart, M., 1999. Direct numerical simulation of an adverse pressure gradient turbulent boundary layer on high performance computers. In: Krause, E., Jäger, W. (Eds.), High Performance Computing in Science and Engineering ’99. Springer, Berlin, Heidelberg, New York, pp. 315–326.Google Scholar
  8. [8]
    Manhart, M., 1999. Direct numerical simulation of turbulent boundary layers on high performance computers. In: Krause, E., Jaeger, W. (Eds.), High performance Computing in Science and Engineering 1998. Springer Verlag.Google Scholar
  9. [9]
    Manhart, M., 1999. Using zonal grids for direct numerical simulation of turbulent boundary layers with pressure gradients. In: Nitsche, W., Heinemann, H.-J., Hilbig, R. (Eds.), Vol. 72, Notes on numerical fluid mechanics. Vieweg-Verlag, Braunschweig, pp. 299–306.Google Scholar
  10. [10]
    Manhart, M., 2000. The directional dissipation scale: a criterion for grid resolution in direct numerical simulations. In: Dopazo, C., et al. (Eds.), Advances in Turbulence VIII. Eigth European Turbulence Conference, CIMNE, Barcelona, pp. 667–670.Google Scholar
  11. [11]
    Manhart, M., Friedrich, R., 1999. Towards DNS of separated turbulent boundary layers. In: Voke, P., Sandham, N., Kleiser, L. (Eds.), Direct and Large-Eddy Simulation III. Kluwer Academic Publishers, Dordrecht, pp. 429–440.Google Scholar
  12. [12]
    Menter, F. R., 1993. Zonal two-equation k-ω turbulence models for aerodynamic flows. In: AIAA 24th Fluid Dynamics Conf., AIAA Paper 93–2906.Google Scholar
  13. [13]
    Na, Y., Moin, P., 1998. Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 370, 175–201.zbMATHCrossRefGoogle Scholar
  14. [14]
    Richter, K., Friedrich, R., Schmitt, L., 1987. Large-eddy simulation of turbulent wall boundary layers with pressure gradient. In: 6th Symposium on Turbulent Shear Flows, Toulouse. pp. 22/3/1–22/3/7.Google Scholar
  15. [15]
    Shima, N;, 1993. Prediction of turbulent boundary layers with a second moment closure : Part i — effects of periodic pressure gradient, wall transpiration, and free-stream turbulence 115, 56–63.Google Scholar
  16. [16]
    Skote, M., Henningson, D., Hirose, N., Matsuo, Y., Nakamura, T., May 22–25 2000. Parallel DNS of a separating turbulent boundary layer. In: Proceedings of the Parallel CFD 2000. NTNU, Trondheim, Norway.Google Scholar
  17. [17]
    Skote, M., Henningson, D. S., 2001. DNS of a separating turbulent boundary layer. In: Lindborg, E., et al. (Eds.), Turbulence and shear flow phenomena. Second International Symposium. KTH, Stockholm.Google Scholar
  18. [18]
    Spalart, P., 1988. Direct simulation of a turbulent boundary layer up to Ro = 1410. J. Fluid Mech. 187, 61–98.zbMATHCrossRefGoogle Scholar
  19. [19]
    Spalart, P. R., Allmaras, S. R., 1992. A one-equation turbulence model for aerodynamic flows. AIAA Paper 92–439.Google Scholar
  20. [20]
    Watmuff, J., 1989. An experimental investigation of a low Reynolds number turbulent boundary layer subject to an adverse pressure gradient. In: Ann. Res. Briefs. Center for Turbulent Research, pp. 37–49.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • M. Manhart
    • 1
  • R. Friedrich
    • 1
  • G. Deng
    • 2
  • J. Piquet
    • 2
  1. 1.Fachgebiet StrömungsmechanikTechnische Universität MünchenGarchingGermany
  2. 2.LMF-Ecole Centrale de NantesNantesFrance

Personalised recommendations