LES of transitional boundary layers and wakes with trailing edge blowing

  • J. Krömer
  • W. Schröder
  • M. Meinke
  • P. Comte
  • C. Brun
  • M. Haberkorn
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)


Two different solution schemes are applied for the LES of compressible turbulent flows. First, a conservative LES formulation is applied with the filtered structure-function model. Solutions for a compressible channel flow at M0 = 1 are in overall agreement with DNS references. The quasi-incompressible transitional boundary layers show the establishment of a streak system well upstream of the peak of skin friction. For harmonic and subharmonic perturbations, however, a different first location of high speed regions is observed. The second method is a mixed central-upwind scheme. The results for the case of a fully turbulent boundary layer are in good agreement with reference data from other authors. The simulation of the wake with trailing edge blowing shows that the jet inhibits the generation of the regular vortex shedding. Instead only smaller and weaker spanwise vortices are generated, rapidly decaying through the interaction with streamwise vortices. Thus, the mixing in the wake with the external flow is reduced and the losses become smaller compared to the case without blowing.


Turbulent Boundary Layer Coarse Grid Fine Grid Spanwise Direction Streamwise Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. I. Barenblatt. Scaling laws for fully developed turbulent shear flows. Part 1. basic hypothesis and analysis. J. Fluid Mech., 248:513–520, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    G. I. Barenblatt and V. M. Prostokishin. Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data. J. Fluid Mech., 248:521–529, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    G. N. Coleman, J. Kim, and R. D. Moser. A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech., 305:159–183, 1995.zbMATHCrossRefGoogle Scholar
  4. [4]
    P. Comte. Dynamics of coherent vortices in large-eddy simulation. In B. J. Geurts, R. Friedrich, and O. Métais, editors, Direct and Large-Eddy Simulations 4, pages 471–480, 2001.Google Scholar
  5. [5]
    F. Ducros, P. Comte, and M. Lesieur. Large eddy simulation of transition to turbulence in a boundary layer developing over a flat plate. J. Fluid Mech., 326:1–36, 1996.zbMATHCrossRefGoogle Scholar
  6. [6]
    G. Erlebacher and S. Sarkar. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. ICASE Rep., 92–18, Apr. 1992. NASA CR 189640.Google Scholar
  7. [7]
    V. M. Falkner. The resistance of a smooth flat plate with turbulent boundary layer. Aircraft Eng., 15:65–68, 1943.Google Scholar
  8. [8]
    D. Gottlieb and E. Turkel. Dissipative two-four methods for time-dependent problems. Math. Comput., 30(136):703–723, Oct. 1976.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    T. Herbert. Secondary instability of boundary layers. Ann. Rev. Fluid. Mech., 20(487–526), 1988.CrossRefGoogle Scholar
  10. [10]
    T. Herbert and F. P. Bertolotti. Analysis of the linear stability of compressible boundary layer using PSE. Theoret. Comp. Fluid Dyn., 3(117–124), 1991.zbMATHCrossRefGoogle Scholar
  11. [11]
    J. C. R. Hunt, A. Wray, and P. Moin. Eddies, stream, and convergence zones in turbulent flows. Center For Turbulence Research, 1988.Google Scholar
  12. [12]
    J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mech., 285:69–94, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    C. Kapteijn, J. Amecke, and V. Michelassi. Aerodynamic performance of a transonic turbine guide vane with trailing edge coolant ejection: Part 1 — Experimental approach. Journal of Turbomachinery, 118:519–528, July 1996.CrossRefGoogle Scholar
  14. [14]
    J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177:133–166, 1987.zbMATHCrossRefGoogle Scholar
  15. [15]
    P. S. Klebanoff, K. D. Tidstrom, and L. M. Sargent. The three dimensional nature of boundary layer instability. J. Fluid Mech., 12:1–34, 1962.zbMATHCrossRefGoogle Scholar
  16. [16]
    M. Lesieur and P. Comte. Favre filtering and macro-temperature in large-eddy simulation of compressible turbulence. C. R. Acad. Sci. Paris, 2001.Google Scholar
  17. [17]
    M. Lesieur and O. Metais. New trends in luge-eddy simulations of turbulence. Ann. Rev. Fluid. Mech., 28:45–82, 1996.CrossRefMathSciNetGoogle Scholar
  18. [18]
    T. S. Lund, X. Wu, and D. Squires. Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys., 140:233– 258, 1998.zbMATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    M. Meinke, W. Schröder, E. Krause, and T. Rister. A comparison of secondand sixth-order methods for large-eddy simulations. Computers and Fluids, 2001, accepted for publication.Google Scholar
  20. [20]
    P. Moin, K. Squires, W. Cabot, and S. Lee. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids, A 3(11):2746–2757, Nov. 1991.Google Scholar
  21. [21]
    M. Opiela, M. Meinke, W. Schröder, P. Comte, and E. Briand. LES of turbulent boundary layers and wakes. In E. H. Hirschel, editor, CNRS-DFG Collaborative Research Programme, Notes on Numerical Fluid Mechanics. Vieweg Verlag, Braunschweig, 2000.Google Scholar
  22. [22]
    T. J. Poinsot and S. K. Lele. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101:104–129, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. S. R. Lechner and R. Friedrich. Turbulent supersonic channel flow. J. of Turbulence, 2, 2001.Google Scholar
  24. [24]
    K. S. Robinson. The kinematics of turbulent boundary layer structure. Report 103859, NASA, 1991.Google Scholar
  25. [25]
    M. T. Schobeiri and K. Pappu. Optimization of trailing edge ejection mixing losses: A theoretical and experimental study. J. Fluid Eng., 121:118–125, Mar. 1999.CrossRefGoogle Scholar
  26. [26]
    C. H. Sieverding. The influence of trailing edge ejection on the base pressure in transonic turbine cascades. ASME Journal of Engineering for Power, 105:215–222, 1983.CrossRefGoogle Scholar
  27. [27]
    W. Tabakoff and A. Hamed. Theoretical and experimental study of flow through turbine cascades with coolant flow injection. Pap. 75–843, AIAA, 1975.Google Scholar
  28. [28]
    A. Walz. Boundary layers of flow and temperature. MIT Press, 1969.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. Krömer
    • 1
  • W. Schröder
    • 1
  • M. Meinke
    • 1
  • P. Comte
    • 2
  • C. Brun
    • 2
  • M. Haberkorn
    • 2
  1. 1.Aerodynamisches InstitutRWTH AachenAachenGermany
  2. 2.Institut de Mécanique des Fluides et des SolidesStrasbourg CedexFrance

Personalised recommendations