Skip to main content

LES of transitional boundary layers and wakes with trailing edge blowing

  • Conference paper
Numerical Flow Simulation III

Summary

Two different solution schemes are applied for the LES of compressible turbulent flows. First, a conservative LES formulation is applied with the filtered structure-function model. Solutions for a compressible channel flow at M0 = 1 are in overall agreement with DNS references. The quasi-incompressible transitional boundary layers show the establishment of a streak system well upstream of the peak of skin friction. For harmonic and subharmonic perturbations, however, a different first location of high speed regions is observed. The second method is a mixed central-upwind scheme. The results for the case of a fully turbulent boundary layer are in good agreement with reference data from other authors. The simulation of the wake with trailing edge blowing shows that the jet inhibits the generation of the regular vortex shedding. Instead only smaller and weaker spanwise vortices are generated, rapidly decaying through the interaction with streamwise vortices. Thus, the mixing in the wake with the external flow is reduced and the losses become smaller compared to the case without blowing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. I. Barenblatt. Scaling laws for fully developed turbulent shear flows. Part 1. basic hypothesis and analysis. J. Fluid Mech., 248:513–520, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  2. G. I. Barenblatt and V. M. Prostokishin. Scaling laws for fully developed turbulent shear flows. Part 2. Processing of experimental data. J. Fluid Mech., 248:521–529, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. G. N. Coleman, J. Kim, and R. D. Moser. A numerical study of turbulent supersonic isothermal-wall channel flow. J. Fluid Mech., 305:159–183, 1995.

    Article  MATH  Google Scholar 

  4. P. Comte. Dynamics of coherent vortices in large-eddy simulation. In B. J. Geurts, R. Friedrich, and O. Métais, editors, Direct and Large-Eddy Simulations 4, pages 471–480, 2001.

    Google Scholar 

  5. F. Ducros, P. Comte, and M. Lesieur. Large eddy simulation of transition to turbulence in a boundary layer developing over a flat plate. J. Fluid Mech., 326:1–36, 1996.

    Article  MATH  Google Scholar 

  6. G. Erlebacher and S. Sarkar. Statistical analysis of the rate of strain tensor in compressible homogeneous turbulence. ICASE Rep., 92–18, Apr. 1992. NASA CR 189640.

    Google Scholar 

  7. V. M. Falkner. The resistance of a smooth flat plate with turbulent boundary layer. Aircraft Eng., 15:65–68, 1943.

    Google Scholar 

  8. D. Gottlieb and E. Turkel. Dissipative two-four methods for time-dependent problems. Math. Comput., 30(136):703–723, Oct. 1976.

    Article  MATH  MathSciNet  Google Scholar 

  9. T. Herbert. Secondary instability of boundary layers. Ann. Rev. Fluid. Mech., 20(487–526), 1988.

    Article  Google Scholar 

  10. T. Herbert and F. P. Bertolotti. Analysis of the linear stability of compressible boundary layer using PSE. Theoret. Comp. Fluid Dyn., 3(117–124), 1991.

    Article  MATH  Google Scholar 

  11. J. C. R. Hunt, A. Wray, and P. Moin. Eddies, stream, and convergence zones in turbulent flows. Center For Turbulence Research, 1988.

    Google Scholar 

  12. J. Jeong and F. Hussain. On the identification of a vortex. J. Fluid Mech., 285:69–94, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  13. C. Kapteijn, J. Amecke, and V. Michelassi. Aerodynamic performance of a transonic turbine guide vane with trailing edge coolant ejection: Part 1 — Experimental approach. Journal of Turbomachinery, 118:519–528, July 1996.

    Article  Google Scholar 

  14. J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech., 177:133–166, 1987.

    Article  MATH  Google Scholar 

  15. P. S. Klebanoff, K. D. Tidstrom, and L. M. Sargent. The three dimensional nature of boundary layer instability. J. Fluid Mech., 12:1–34, 1962.

    Article  MATH  Google Scholar 

  16. M. Lesieur and P. Comte. Favre filtering and macro-temperature in large-eddy simulation of compressible turbulence. C. R. Acad. Sci. Paris, 2001.

    Google Scholar 

  17. M. Lesieur and O. Metais. New trends in luge-eddy simulations of turbulence. Ann. Rev. Fluid. Mech., 28:45–82, 1996.

    Article  MathSciNet  Google Scholar 

  18. T. S. Lund, X. Wu, and D. Squires. Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys., 140:233– 258, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Meinke, W. Schröder, E. Krause, and T. Rister. A comparison of secondand sixth-order methods for large-eddy simulations. Computers and Fluids, 2001, accepted for publication.

    Google Scholar 

  20. P. Moin, K. Squires, W. Cabot, and S. Lee. A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids, A 3(11):2746–2757, Nov. 1991.

    Google Scholar 

  21. M. Opiela, M. Meinke, W. Schröder, P. Comte, and E. Briand. LES of turbulent boundary layers and wakes. In E. H. Hirschel, editor, CNRS-DFG Collaborative Research Programme, Notes on Numerical Fluid Mechanics. Vieweg Verlag, Braunschweig, 2000.

    Google Scholar 

  22. T. J. Poinsot and S. K. Lele. Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys., 101:104–129, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  23. J. S. R. Lechner and R. Friedrich. Turbulent supersonic channel flow. J. of Turbulence, 2, 2001.

    Google Scholar 

  24. K. S. Robinson. The kinematics of turbulent boundary layer structure. Report 103859, NASA, 1991.

    Google Scholar 

  25. M. T. Schobeiri and K. Pappu. Optimization of trailing edge ejection mixing losses: A theoretical and experimental study. J. Fluid Eng., 121:118–125, Mar. 1999.

    Article  Google Scholar 

  26. C. H. Sieverding. The influence of trailing edge ejection on the base pressure in transonic turbine cascades. ASME Journal of Engineering for Power, 105:215–222, 1983.

    Article  Google Scholar 

  27. W. Tabakoff and A. Hamed. Theoretical and experimental study of flow through turbine cascades with coolant flow injection. Pap. 75–843, AIAA, 1975.

    Google Scholar 

  28. A. Walz. Boundary layers of flow and temperature. MIT Press, 1969.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krömer, J., Schröder, W., Meinke, M., Comte, P., Brun, C., Haberkorn, M. (2003). LES of transitional boundary layers and wakes with trailing edge blowing. In: Hirschel, E.H. (eds) Numerical Flow Simulation III. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45693-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45693-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-53653-3

  • Online ISBN: 978-3-540-45693-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics