Multiscale Methods for the Simulation of Turbulent Flows

  • Michael Griebel
  • Frank Koster
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)


In this paper we apply the finite difference method on adaptive sparse grids [9] to the simulation of turbulent flows. This method combines the flexibility and efficiency of finite difference schemes with the advantages of an adaptive approximation by tensor product multiscale bases. We shortly discuss the method. Then, we present numerical results for a simple linear convection problem for a validation of our scheme. Finally, results for three-dimensional turbulent shear layers are shown.


Shear Layer Besov Space Finite Difference Scheme Sparse Grid Multi Scale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brown G.L., Roshko A. (1974) On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64. Google Scholar
  2. [2]
    Cohen A., Daubechies I. et al. (1992) Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45, 485–560zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Dahmen W., Schneider R. et al. (1998) Nonlinear Functionals of Wavelet Expansions. IGPM, RWTH Aachen, to appear in Numerische Mathematik.Google Scholar
  4. [4]
    Daubechies I. (1988) Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41, 909–996zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Deslaurier G., Dubuc S. (1989) Symmetric iterative interpolation processes. Constr. Appr. 5, 49–68CrossRefGoogle Scholar
  6. [6]
    DeVore R. (1999) Nonlinear Approximation. Acta Numerica 8. Google Scholar
  7. [7]
    Donoho D. (1992) Interpolating wavelet transform. Preprint Stanford University.Google Scholar
  8. [8]
    Faber G. (1909) Über stetige Funktionen. Math. Annalen 66, 81–94.zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Griebel M. (1998) Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences. Computing 61, 151–180.zbMATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Griebel M., Koster F. (2000) Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations. in Malek J., Rokyta M. (eds.), Advanced Mathematical Theories in Fluid Mechanics.Google Scholar
  11. [11]
    Harten A. (1995) Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Comm. Pure Appl. Math. 48, 1305–1342.zbMATHCrossRefMathSciNetGoogle Scholar
  12. [112]
    Ho C.-M., Huerre P. (1984) Perturbated free shear layers. Ann. Rev. Fluid Mech. 16, 365–424.CrossRefGoogle Scholar
  13. [13]
    Hochmuth R. (1999) Wavelet Bases in Numerical Analysis and Restricted Nonlinear Approximation. Habilitationsschrift, Freie Universität Berlin.Google Scholar
  14. [14]
    Koster F. (2000) A Proof of the Consistency of the Finite Difference Technique on Sparse Grids. Computing 65, 247–261.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Koster F., Schneider K., Griebel M., Farge M. (2000) Adaptive Wavelet Methods for the Navier-Stokes equations. in E.H. Hirschel (ed.) Notes on Numerical Fluid Mechanics.Google Scholar
  16. [16]
    Koster F. (2001) Multiskalen-basierte Finite Differenzen Verfahren auf adaptiven Düinnen Gittern. PhD thesis, Universität Bonn.Google Scholar
  17. [17]
    Koster E (2001) Preconditioners for Sparse Grid Discretizations. Preprint SFB-256 Universität Bonn.Google Scholar
  18. [18]
    MaIlat S. (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Patt. Anal. and Mach. Intell. 7, 674–693CrossRefGoogle Scholar
  19. [19]
    Rogers M.M., Moser R.D. (1993) Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids 6, 903–923.CrossRefGoogle Scholar
  20. [20]
    Schiekofer T. (1998) Die Methode der finiten Differenzen auf dünnen Gittern zur Lösung elliptischer und parabolischer PDEs. PhD thesis, Universität Bonn.zbMATHGoogle Scholar
  21. [21]
    Temlyakov V. (1993) Approximation of Periodic Functions. Nova Science Publishers.zbMATHGoogle Scholar
  22. [22]
    Townsend A.A. (1976) Structure of Turbulent Shear Flow. Cambridge University Press.zbMATHGoogle Scholar
  23. [23]
    Triebe! H. (1992) Theory of function spaces II. Birkhäuser Verlag.CrossRefGoogle Scholar
  24. [24]
    Wesseling P. (2001) Principles of Computational Fluid Dynamics. Springer Verlag.CrossRefGoogle Scholar
  25. [25]
    Yserentant H.(1986) On the multilevel splitting of finite element spaces. Num. Math. 49, 379–412.zbMATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Zenger C. (1991) Sparse Grids. in Hackbusch W. (ed.) Notes on Numerical Fluid Mechanics 31.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • Michael Griebel
    • 1
  • Frank Koster
    • 1
  1. 1.Institut für Angewandte MathematikUniversität BonnBonnGermany

Personalised recommendations