Advertisement

Turbulence Model Sensitivity Study for Bluff Body Stabilized Flames

  • J. Yan
  • F. Thiele
  • M. Buffat
Conference paper
Part of the Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) book series (NNFM, volume 82)

Summary

The objective of this work is to assess the performance of different turbulence models in conjunction with the flamelet model for chemically reacting flows. Numerical simulations of H2 /CH4 /N2 jet flame and CH4 /H2 bluff body flame have been performed. The emphasis is firstly on the investigation of the prediction capability of the combustion model and secondly on the study the performance of turbulence models in predicting diffusion flames. The simulation results are compared to experimental measurements of mixture fraction, velocity field, temperature and constituent mass fractions. The results indicated that the Explicit Algebraic Stress Model (EASM) performs superior and mimics most of the significant flow features.

Keywords

Reynolds Stress Mixture Fraction Diffusion Flame Axial Location Bluff Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Abid, C. Rumsey and T. Gatski. “Prediction of nonequlibrium turbulent flows with explicit algebraic stress models”. In AIAA Journal, Vol. 33, 1995, pp.2026–2031.zbMATHCrossRefGoogle Scholar
  2. [2]
    V. Bergmann, W. Meier, D. Wolff and W. Stricker. “Application of spontaneous Raman and Rayleigh scattering and 2D LIF for the characterization f a turbulent CH4/H2/N2 jet diffusion flame”. In Appl. Phys. B, Vol. 66, pp.489–502, 1998.CrossRefGoogle Scholar
  3. [3]
    T. Craft, B. E. Launder and K. A. Suga. “A non-linear eddy-viscosity model including sensitivity to stress anisotropy”. In Proc. of the 10th Symp. on turbulent Shear Flows, Pennsylvania State University, 1995, pp. 23–19.Google Scholar
  4. [4]
    T. B. Gatski and C. G. Speziale. “On explicit algebraic stress models for complex turbulent flows”. In J. Fluid Mech., Vol. 254, 1993, pp. 59–75, 1993.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    F. S. Lien and M. A. Leschziner. “Computational modelling of 3D turbulent flow in S-diffuser and transition ducts”, In Engineering Turbulence Modelling and Experiments 2, Elsevier, Amsterdam, pp.217–228, 1993.Google Scholar
  6. [6]
    F. S. Lien, W. L. Chen and M. A. Leschziner. “Low-Reynolds number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations”. In Engineering Turbulence Modelling and Experiments 3, Elsevier, Amsterdam, pp.91–100, 1996.Google Scholar
  7. [7]
    N. Peters. Turbulent Combustion. Cambridge. University Press. 2000.zbMATHCrossRefGoogle Scholar
  8. [8]
    H. Pitsch, E. Riesmeier, N. Peters,“Unsteady flamelet modelling of soot formation in turbulent diffusion flames”. In Combust. Sci. and Tech., Vol. 158, pp.389–406, 2000.CrossRefGoogle Scholar
  9. [9]
    W. Rodi, “A new algebraic relation for calculation the Reynolds stresses”. in ZAMM, Vol. 56, pp. T219–T221, 1976.CrossRefGoogle Scholar
  10. [10]
    T. Rung, F. Thiele and S. Fu. “On the realisability of non-linear stress-strain relationships for Reynolds-stress closures”. In J. Flow Turbulence and Combustion, Vol. 60, pp. 333–359, 1999.zbMATHCrossRefGoogle Scholar
  11. [11]
    J. Warnatz and U. Mass. Technische Verbrennung. Springer-Verlag, 1993.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • J. Yan
    • 1
  • F. Thiele
    • 1
  • M. Buffat
    • 2
  1. 1.Hermann-Föttinger-Institut für StrömungsmachanikTechnische Universität BerlinBerlinGermany
  2. 2.Laboratoire de Mécanique des Fluides et d’ AcoustiqueEcole Centrale de Lyon (ECL)Ecully CedexFrance

Personalised recommendations