Skip to main content

Hypaxial Muscle Development

  • Chapter

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 38))

Abstract

Chordate larvae show a surprisingly uniform “bauplan”, with a front end carrying the sense organs plus the gill and feeding apparatus, and a posterior end used for locomotion (reviewed in Goodrich 1958; Young 1962). Although adult forms frequently give up this organisation when they switch to sessile life styles, motility based on trunk muscles is maintained in acrania, and both in jaw-less and jawed vertebrates (agnathans and gnathostomes). The mesoderm on either side of the neural canal is subdivided into metameric blocks of muscle. As the notochord, and in vertebrates the vertebral column, prevent telescoping of the body, the serial action of the muscles on either side leads to an undulating movement.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach R (1954) Analysis of the developmental effects of a lethal mutation in the house mouse. J Exp Zool 127: 305 - 329

    Article  Google Scholar 

  • Bendall AJ, Ding J, Hu G, Shen MM, Abate-Shen C (1999) Msxl anatgonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development 126: 4965 - 4976

    Google Scholar 

  • Bladt F, Riethmacher D, Isenmann S, Aguzzi A, Birchmeier C (1995) Essential role for the c-Met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376: 768 - 771

    Article  PubMed  CAS  Google Scholar 

  • Bober E, Lyons GE, Braun T, Cossu G, Buckingham M, Arnold HH (1991) The muscle regulatory gene, Myf-5 has a biphasic pattern of expression during early mouse development. J Cell Biol 113: 1255 - 1265

    Article  PubMed  CAS  Google Scholar 

  • Bober E, Franz T, Arnold HH, Gruss P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120: 603 - 612

    Google Scholar 

  • Borycki A-G, Mendham L, Emerson, CP (1998) Control of somite patterning by Sonic hedgehog and its downstream signal response genes. Development 125: 777 - 790

    PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Müller TS, Wilting J, Christ B, Birchmeier C (1996a) Scatter factor/ Hepatocyte Growth Factor ( SF/HGF) induces emigration of myogenic cells at interlimb in vivo. Dev Biol 179: 303-308

    Google Scholar 

  • Brand-Saberi B, Gamel AJ, Krenn V, Müller TS, Wilting J, Christ B (1996b) N-Cadherin is involved in myoblast migration and muscle differentiation in the avian limb bud. Dev Biol 178: 160 - 173

    Article  PubMed  CAS  Google Scholar 

  • Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbxl in migration of muscle precursor cells. Development 127: 437 - 445

    PubMed  CAS  Google Scholar 

  • Capdevila J, Johnson RL (1998) Endogenous and ectopic expression of noggin suggests a conserved mechanism for regulation of BMP function during limb and somite patterning. Dev Biol 197: 205 - 217

    Article  PubMed  CAS  Google Scholar 

  • Chevallier A, Kieny M, Mauger A, Sengel P (1977) Developmental fate of the somitic mesoderm in the chick embryo. In: Ede DA, Hinchliffe JR, Balls M (eds) Vertebrate limb and somite morphogenesis. Cambridge University Press, Cambridge, pp 421 - 431

    Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191: 381 - 396

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150: 171 - 186

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Jacob M, Jacob HJ (1983) On the origin and development of the ventrolateral abdominal muscles in the avian embryo. An experimental and ultrastructural study. Anat Embryol 166: 87-101

    Google Scholar 

  • Cinnamon Y, Kahane N, Kalcheim C (1999) Characterisation of the early development of specific hypaxial muscles from the ventrolateral myotome. Development 126: 4305 - 4315

    PubMed  CAS  Google Scholar 

  • Cohn MJ, Tickle C (1996) Limbs: a model for patterning formation within the vertebrate body plan. Trend Genet 12: 253 - 257

    Article  CAS  Google Scholar 

  • Cossu G, Kelly R, Tajbakhsh S, Di Donna S, Vivarelli E, Buckingham M (1996) Activation of different myogenic pathways: Myf-5 is induced by the neural tube and MyoD by the dorsal ectoderm in mouse paraxial mesoderm. Development 122: 429 - 437

    PubMed  CAS  Google Scholar 

  • Couly GF, Coltey PM, Le Douarin NM (1993) The triple origin of skull in higher vertebrates: a study in quail-chick chimeras. Development 117: 409 - 429

    PubMed  CAS  Google Scholar 

  • Currie PD, Ingham PW (1998) The generation and interpretation of positional information within the vertebrate myotome. Mech Dev 73: 3 - 21

    Article  PubMed  CAS  Google Scholar 

  • Daston G, Lamar E, Olivier M, Goulding M (1996) Pax3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 122: 1017 - 1027

    Google Scholar 

  • Dealy CN, Roth A, Ferrari D, Brown AMC, Kosher RA (1993) Wnt-5a and Wnt-7a are expressed in the developing chick limb bud in a manner suggesting roles in the pattern formation along the proximodistal and dorsoventral axis. Mech Dev 43: 175 - 186

    Google Scholar 

  • Denetclaw WF, Ordahl CP (2000) The growth of the dermomyotome and formation of early myotome lineages in thoracolumbar somites of chicken embryos. Development 127: 893 - 905

    PubMed  CAS  Google Scholar 

  • Denetclaw WF, Christ B, Ordahl CP (1997) Location and growth of epaxial myotome precursor cells. Development 124: 1601 - 1610

    PubMed  CAS  Google Scholar 

  • Dickson G, Peck D, Moore SE, Barton CM, Walsh FS (1990). Enhanced myogenesis in NCAM transfected mouse myoblasts. Nature 344: 348 - 351

    Article  PubMed  CAS  Google Scholar 

  • Dietrich S (1999) Regulation of hypaxial muscle development. Cell Tissue Res 296:175-182 Dietrich S, Schubert FR, Lumsden A (1997) Control of dorsoventral pattern in the chick paraxial mesoderm. Development 124: 3895 - 3908

    Google Scholar 

  • Dietrich S, Schubert FR, Healy C, Sharpe PT, Lumsden A (1998) Specification of the hypaxial musculature. Development 125: 2235 - 2249

    PubMed  CAS  Google Scholar 

  • Dietrich S,Abou-Rebyeh F, Brohmann H, Bladt F, Sonnenberg-Riethmacher E, Yamaai T, Lumsden A, Brand-Saberi B, Birchmeier C (1999) The role of SF/HGF and c-Met in the development of skeletal muscle. Development 126: 1621 - 1629

    Google Scholar 

  • Donalies M, Cramer M, Ringwald M, Starzinski-Powitz A (1991) expression of M-cadherin, a member of the cadherin multigene family, correlates with differentiation of skeletal muscle cells. Proc Natl Acad Sci USA 88: 8024 - 8028

    Google Scholar 

  • Eisen JS (1999) Patterning motorneurons in the vertebrate nervous system. Trends Neurosci 22: 321 - 326

    Article  PubMed  CAS  Google Scholar 

  • Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL (1996) Pax3 modulates expression of the c-Met receptor during limb muscle development. Proc Natl Acad Sci USA 93: 4213 - 4218

    Google Scholar 

  • Fan CM, Kuwana E, Bulfone A, Fletcher CF, Copeland NG, Jenkins NA, Crews S, Martinez S, Puelles L, Rubenstein JL, Tessier-Lavigne M (1996) Expression patterns of two murine homologs of Drosophila single-minded suggest possible roles in embryonic patterning and in the pathogenesis of Down syndrome. Mol Cell Neurosci 7: 1 - 16

    Article  PubMed  CAS  Google Scholar 

  • Fan C-M, Lee CS, Tessier-Lavigne M (1997) A role for WNT proteins in induction of dermomyotome. Dev Biol 191: 160 - 165

    Article  PubMed  CAS  Google Scholar 

  • Franz T, Kothary R, Surani MA, Halata Z, Grim M (1993) The Splotch mutation interferes with muscle development in the limbs. Anat Embryol 187: 153 - 160

    PubMed  CAS  Google Scholar 

  • Gaunt SJ (1994) Conservation of the Hox code during morphological evolution. Int J Dev Biol 38: 549 - 552

    PubMed  CAS  Google Scholar 

  • Goodrich ES (1958) Studies on the structure and development of vertebrates. Dover Publications, New York

    Google Scholar 

  • Gossler A, Hrabe de Angelis M (1998) Somitogenesis. Curr Top Dev Biol 38: 225 - 287

    CAS  Google Scholar 

  • Goulding M, Lumsden A, Paquette AJ (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120: 957 - 971

    PubMed  CAS  Google Scholar 

  • Grim M (1970) Differentiation of myoblasts and the relationship between somites and wing bud of chick embryos. Z Anat Entwickl Ges 132: 260 - 271

    Article  CAS  Google Scholar 

  • Gross MK, Moran-Rivard L,Velasquez T, Nakatsu MN, Jagla K, Goulding M (2000) Lbxl is required for muscle precursor migration along a lateral pathway into the limb. Development 127: 413 - 424

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morph 88: 49 - 92

    Article  Google Scholar 

  • Hayashi K, Ozawa E (1995) Myogenic cell migration from somites is induced by tissue contact with medial region of the presumptive limb mesoderm in chick embryos. Development 121: 661 - 669

    PubMed  CAS  Google Scholar 

  • Heymann S, Koudrova M, Arnold HH, Koster M, Braun T (1996) Regulation and function of SF/HGF during migration of limb muscle precursor cells in chicken. Dev Biol 180: 566 - 578

    Article  PubMed  CAS  Google Scholar 

  • Hirsinger E, Duprez D, Jouve C, Malapert P, Cooke J, Pourquié 0 (1997) Noggin acts downstream of Wnt and Sonic Hedgehog to antagonize BMP4 in avian somite patterning. Development 124: 4605 - 4614

    CAS  Google Scholar 

  • Huang R, Zhi Q, Izpisua-Belmonte JC, Christ B, Patel K (1999) Origin and development of the avian tongue muscles. Anat Embryol 200: 137 - 52

    Article  PubMed  CAS  Google Scholar 

  • Itoh N, Mima T, Mikawa T (1996) Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle. Development 122: 291 - 300

    PubMed  CAS  Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1978) On the migration of myogenic stem cells into the prospective wing region of chick embryos. A scanning and transmission electron microscopic study. Anat Embryol 153: 179-193

    Google Scholar 

  • Jacob M, Christ B, Jacob HJ (1979) The migration of myogenic stem cells from the somites into the leg region of avian embryos. Anat Embryol 157: 291 - 309

    Article  PubMed  CAS  Google Scholar 

  • Jagla K, Dollé P, Mattei M-G, Jagla T, Schuhbaur B, Dretzen G, Bellard F, Bellard M (1995) Mouse Lbxl and human LBX1 define a novel mammalian homeobox gene family related to the Drosophila ladybird genes. Mech Dev 53: 345 - 356

    Article  PubMed  CAS  Google Scholar 

  • Kablar B, Krastel K, Ying C, Asakura A, Tapscott SJ, Rudnicki MA (1997) MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124: 4729 - 4738

    PubMed  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (1998a) The origin and fate of pioneer myotomal cells in the avian embryo. Mech Dev 74: 59 - 73

    Article  PubMed  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (1998b) The cellular mechanism by which the dermomyotome contributes to the second wave of myotome development. Development 125: 4259 - 4271

    PubMed  CAS  Google Scholar 

  • Knudsen KA, McElwee SA, Myers L (1990). A role for the neural cell adhesion molecule NCAM, in myoblast interaction during myogenesis. Dev Biol 138: 159 - 168

    Article  PubMed  CAS  Google Scholar 

  • Maina F, Casagranda F, Audero E, Simeone A, Comoglio PM, Klein R, Ponzetto C (1996) Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell 87: 531 - 542

    Article  PubMed  CAS  Google Scholar 

  • Marcelle C, Stark MR, Bronner-Fraser M (1997) Coordinate actions of BMPs, Wnts, Shh and Noggin mediate patterning of the dorsal somite. Development 12: 3955-3963

    Google Scholar 

  • Maroto M, Reshef R, Münsterberg AE, Koester S, Goulding M, Lassar, AB (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89: 139 - 148

    Article  PubMed  CAS  Google Scholar 

  • McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube. Genes Dev 12: 1438 - 1452

    Article  PubMed  CAS  Google Scholar 

  • Mennerich D, Schäfer K, Braun T (1998) Pax-3 is necessary but not sufficient for Lbx1 expression in myogenic precursor cells of the limb. Mech Dev 73: 147 - 158

    Google Scholar 

  • Münsterberg A, Lassar A (1995) Combinatorial signals from the neural tube, floor plate and noto- chord induce myogenic bHLH gene expression in the somite. Development 121: 651 - 660

    PubMed  Google Scholar 

  • Münsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9: 2911 - 2922

    Article  PubMed  Google Scholar 

  • Myokai F, Washio N, Asahara Y, Yamaai T, Tanda N, Ishikawa T, Aoki S, Kurihara H, Murayama Y, Saito T et al. (1995) Expression of the hepatocyte growth factor gene during chick limb development. Dev Dyn 202: 80 - 90

    Article  PubMed  CAS  Google Scholar 

  • Neyt C, Jagla, K, Thisse C, Thisse B, Haines L, Currie PD (2000) Evolution of vertebrate appendicular muscle. Nature 408: 82 - 86

    Article  PubMed  CAS  Google Scholar 

  • Nishi S (1967) Muskeln des Rumpfes. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, vol 5. A Asher and Co, Amsterdam, pp 341 - 446

    Google Scholar 

  • Noden DM (1983) The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat 168: 257 - 276

    Article  PubMed  CAS  Google Scholar 

  • Nowicki JL, Burke AC (2000) Hox genes and morphological identity: axial versus lateral patterning in the vertebrate mesoderm. Development 127: 4265 - 4275

    PubMed  CAS  Google Scholar 

  • Ordahl CP, Le Douarin NM (1992) Two myogenic lineages within the developing somite. Development 114: 339 - 353

    PubMed  CAS  Google Scholar 

  • Pourquié O, Coltey M, Bréant C, Le Douarin NM (1995) Control of somite patterning by signals from the lateral plate. Proc Natl Acad Sci USA 92: 3219 - 3223

    Article  PubMed  Google Scholar 

  • Pourquié O, Fan CM, Coltey M, Hirsinger E, Watanabe Y, Bréant C, Francis-West P, Brickell P, Tessier-Lavigne M, Le Douarin NM (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84: 461 - 471

    Article  PubMed  Google Scholar 

  • Pownall ME, Emerson CP (1992) Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev Biol 151: 67 - 79

    Article  PubMed  CAS  Google Scholar 

  • Reshef R, Maroto M, Lassar AB (1998) Regulation of dorsal somitic fates: BMPs and Noggin control the timing and pattern of myogenic regulator expression. Genes Dev 12: 290303

    Google Scholar 

  • Rong PM, Teillet MA, Ziller C, Le Douarin NM (1992) The neural tube/notochord complex is necessary for vertebral but not limb and body wall striated muscle differentiation. Development 115: 657 - 672

    PubMed  CAS  Google Scholar 

  • Scaal M, Bonafede A, Dathe V, Sachs M, Cann G, Christ B, Brand-Saberi B (1999) SF/HGF is a mediator between limb patterning and muscle development. Development 126: 48854893

    Google Scholar 

  • Schäfer K, Braun T (1999) Early specification of limb muscle precursor cells by the homeobox gene Lbxlh. Nat Genet 23: 213 - 216

    Article  PubMed  Google Scholar 

  • Schmidt M, Tanaka M, Münsterberg A (2000) Expression of ß-catenin in the developing chick myotome is regulated by myogenic signals. Development 127: 4105 - 4113

    PubMed  CAS  Google Scholar 

  • Schubert FR, Mootoosamy RC, Walters EH, Graham A, Tumiotto L, Hünsterberg AE, Lumsden A, Dietrich S (2002) Unit 6 marks sites at epithelial transformations in the chick embryo. Mech Dev, in press

    Google Scholar 

  • Smith TH, Kachinsky AM, Miller JB (1994) Somite subdomains, muscle cell origins, and the four muscle regulatory factor proteins. J Cell Biol 127: 95 - 105

    Article  PubMed  CAS  Google Scholar 

  • Sonnenberg E, Meyer D, Weidner KM, Birchmeier C (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123: 223 - 235

    Article  PubMed  CAS  Google Scholar 

  • Stern HM, Brown AM, Hauschka SD (1995) Myogenesis in paraxial mesoderm: preferential induc- tion by dorsal neural tube and by cells expressing Wnt-1. Development 121: 3675 - 3686

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax3 and Myf5 act upstream of MyoD. Cell 89: 127 - 138

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Borello U, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M, Cossu G (1998) Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125: 4155 - 4162

    PubMed  CAS  Google Scholar 

  • Thery C, Sharpe MJ, Batley SJ, Stern CD, Gherardi E (1995) Expression of HGF/SF, HGF1/MSP, and c-met suggests new functions during early chick development. Dev Genet 17: 90 - 101

    Article  PubMed  CAS  Google Scholar 

  • Tremblay P, Dietrich S, Stoykova A, Stuart ET, Gruss P (1995) Pax genes as pleiotropic regulators of embryonic development. In: Juurlink BHJ, Krone PH, Kulyk WM, Verge VMK, Doucette JR (eds) Neural cell specification: molecular mechanisms and neurotherapeutic implications. Plenum Press, New York

    Google Scholar 

  • Tremblay P, Dietrich S, Meriskay M, Schubert FR, Li Z, Paulin D (1998) A crucial role for Pax3 in the development of the hypaxial musculature and the long-range migration of muscle precursors. Dev Biol 203: 49 - 61

    Article  PubMed  CAS  Google Scholar 

  • Venters SJ, Thorsteinsdottir S, Duxon MJ (1999) Early development of the myotome in the mouse. Dev Dyn 216: 219 - 232

    Article  PubMed  CAS  Google Scholar 

  • Webb SE, Lee KK, Tang MK, Ede DA (1997) Fibroblast growth factors 2 and 4 stimulate migration of mouse embryonic limb myogenic cells. Dev Dyn 209: 206 - 216

    Article  PubMed  CAS  Google Scholar 

  • Williams BA, Ordahl CP (1994) Pax-3 expression in segmental mesoderm marks early stages in myogenic cell specification. Development 12: 785 - 796

    Google Scholar 

  • Yang XM, Vogan K, Gros P, Park M (1996) Expression of the met receptor tyrosine kinase in muscle progenitor cells in somites and limbs is absent in Splotch mice. Development 122: 2163 - 2171

    PubMed  CAS  Google Scholar 

  • Young JZ (1962) The life of vertebrates. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parkyn, G., Mootoosamy, R.C., Cheng, L., Thorpe, C., Dietrich, S. (2002). Hypaxial Muscle Development. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45686-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45686-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07735-7

  • Online ISBN: 978-3-540-45686-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics