Skip to main content

The Genetics of Murine Skeletal Muscle Biogenesis

  • Chapter
Vertebrate Myogenesis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 38))

Abstract

Skeletal muscle formation involves a complex interplay of cell movements, cell-cell signalling and the activation of key intracellular genes. In the mouse, the myogenic regulatory factors (MRFs) Myf5 and Myod, act as the gatekeepers into the skeletal muscle lineage. Since this entry point into myogenesis was described, more interest has focused on the immediate upstream and downstream events that control the establishment of the skeletal muscle programme. This review is centred on how certain key regulatory genes are involved in establishing skeletal muscles in the mouse embryo and some recent findings that have established skeletal myogenesis as an important paradigm for studying the restriction of cell fate during embryonic, fetal and postnatal development. Other aspects of myogenesis have been reviewed extensively in recent years, and the reader is invited to refer to them for more detailed information on the subject (Ordahl 2000 and references therein).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284: 770–776

    Article  PubMed  CAS  Google Scholar 

  • Baylies MK, Bate M, Ruiz Gomez M (1998) Myogenesis: a view from Drosophila. Cell 93:921–927 Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, Buckingham ME, Partridge TA

    Google Scholar 

  • Zammit PS (2000) Expression of CD34 and MyfS defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol 151: 1221–1234

    Article  PubMed  Google Scholar 

  • Bianco P, Cossu G, Odelberg SJ, Kollhoff A, Keating MT (1999) Uno, nessuno e centomila: searching for the identity of mesodermal progenitors. Myotubes can dedifferentiate when stimulated with the appropriate signals and that msxl can contribute to the dedifferentiation process. Exp Cell Res 251: 257–263

    Article  PubMed  CAS  Google Scholar 

  • Birchmeier C, Brohmann H (2000) Genes that control the development of migrating muscle precursor cells. Curr Opin Cell Biol 12: 725–730

    Article  PubMed  CAS  Google Scholar 

  • Bober E, Franz T, Arnold HH, Gruss P, Tremblay P (1994) Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development 120: 603–612

    PubMed  CAS  Google Scholar 

  • Borycki AG, Emerson CP Jr (2000) Multiple tissue interactions and signal transduction pathways control somite myogenesis. Curr Top Dev Biol 48: 165–224

    Article  PubMed  CAS  Google Scholar 

  • Borycki AG, Brunk B, Tajbakhsh S, Buckingham M, Chiang C, Emerson CP Jr (1999) Sonic hedgehog controls epaxial muscle determination through MyfS activation. Development 126: 4053–4063

    PubMed  CAS  Google Scholar 

  • Borycki A, Brown AM, Emerson CP Jr (2000) Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites. Development 127: 2075–2087

    PubMed  CAS  Google Scholar 

  • Brand-Saberi B, Ebensperger C, Wilting J, Balling R, Christ B (1993) The ventralizing effect of the notochord on somite differentiation in chick embryos. Anat Embryol 188: 239–245

    Article  PubMed  CAS  Google Scholar 

  • Braun T, Rudnicki MA, Arnold HH, Jaenisch R (1992) Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell 71: 369–382

    Article  PubMed  CAS  Google Scholar 

  • Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbxl in migration of muscle precursorcells. Development 127: 437–445

    PubMed  CAS  Google Scholar 

  • Carvajal JJ, Cox D, Summerbell D, Rigby PW (2001) A BAC transgenic analysis of the Mrf4/Myf5 locus reveals interdigitated elements that control activation and maintenance of gene expression during muscle development. Development 128: 1857–1868

    PubMed  CAS  Google Scholar 

  • Cossu G, Tajbakhsh S, Buckingham M (1996) How is myogenesis initiated in the embryo Trends Genet 12: 218–223

    Article  PubMed  CAS  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191: 381–396

    Article  PubMed  CAS  Google Scholar 

  • Cusella-De Angelis MG, Molinari S, Donne AD, Coletta M, Vivarelli E, Bouche M, Molinaro M, Ferrari S, Cossu G (1994) Differential response of embryonic and fetal myoblasts to TGF(3: a possible regulatory mechanism of skeletal muscle histogenesis. Development 121: 637649

    Google Scholar 

  • De Angelis L, Berghella L, Coletta M, Lattanzi L, Zanchi M, Cusella-De Angelis MG, Ponzetto C, Cossu G (1999) Skeletal myogenic progenitors originating from embryonic dorsal aorta coexpress endothelial and myogenic markers and contribute to postnatal muscle growth and regeneration. J Cell Biol 147: 869–878

    Article  PubMed  Google Scholar 

  • Delfini M, Hirsinger E, Pourquie O, Duprez D (2000) Deltal-activated Notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 127: 5213–5224

    PubMed  CAS  Google Scholar 

  • Denetclaw WF, Christ B, Ordahl CP (1997) Location and growth of epaxial myotome precursor cells. Development 124: 1601–1610

    PubMed  CAS  Google Scholar 

  • Gossler A, Hrabe de Angelis M (1997) Somitogenesis. Curr Top Dev Biol 38: 225–287

    Google Scholar 

  • Goulding M, Lumsden A, Paquette AJ (1994) Regulation of Pax-3 expression in the dermomyotome and its role in muscle development. Development 120: 957–971

    PubMed  CAS  Google Scholar 

  • Grass S, Arnold HH, Braun T (1996) Alterations in somite patterning of Myf-5 deficient mice: a possible role for FGF-4 and FGF-6. Development 122: 141–150

    PubMed  CAS  Google Scholar 

  • Gross MK, Moran-Rivard L, Velasquez T, Nakatsu M. N, Jagla K, Goulding M (2000) Lbxl is required for muscle precursor migration along a lateral pathway into the limb. Development 127: 413–424

    PubMed  CAS  Google Scholar 

  • Hadchouel J, Tajbakhsh S, Primig M, Chang TH, Daubas P, Rocancourt D, Buckingham M (2000) Modular long-range regulation of myf5 reveals unexpected heterogeneity between skeletal muscles in the mouse embryo. Development 127: 4455–4467

    PubMed  CAS  Google Scholar 

  • Hasty P, Bradley A, Morris JH, Edmondson DG, Venuti JM, Olson EN, Klein WH (1993) Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501–506

    Article  PubMed  CAS  Google Scholar 

  • Hawkins N, Garriga G (1998) Asymmetric cell division: from A to Z. Genes Dev 12:3625–3638 Heslop L, Beauchamp JR, Tajbakhsh S, Buckingham ME, Partridge TA, Zammit PS (2001) Transplanted primary neonatal myoblasts can give rise to functional satellite cells as identified using the MyfS(nlacZ1+) mouse. Gene Ther 8: 778–783

    Google Scholar 

  • Hirsinger E, Malapert P, Dubrulle J, Delfini MC, Duprez D, Henrique D, Ish-Horowicz D, Pourquie O (2001) Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development 128: 107–116

    PubMed  CAS  Google Scholar 

  • Houzelstein D, Cheraud Y, Auda-Boucher G, Fontaine-Perus J, Robert B (2000) The expression of the homeobox gene Msxl reveals two populations of dermal progenitor cells originating from the somites. Development 127: 2155–2164

    PubMed  CAS  Google Scholar 

  • Huang R, Zhi Q, Schmidt C, Wilting J, Brand-Saberi B, Christ B (2000) Sclerotomal origin of the ribs. Development 127: 527–532

    PubMed  CAS  Google Scholar 

  • Ikeya M, Takada S (1998) Wnt signaling from the dorsal neural tube is required for the formation of the medial dermomyotome. Development 125: 4969–4976

    PubMed  CAS  Google Scholar 

  • Kablar B, Krastel K, Ying C, Asakura A, Tapscott SJ, Rudnicki MA (1997) MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124: 4729–4738

    PubMed  CAS  Google Scholar 

  • Kablar B, Krastel K, Ying C, Tapscott SJ, Goldhamer DJ, Rudnicki MA (1999) Myogenic determination occurs independently in somites and limb buds. Dev Biol 206: 219–231

    Article  PubMed  CAS  Google Scholar 

  • Kahane N, Cinnamon Y, Kalcheim C (1998) The cellular mechanism by which the dermomyotome contributes to the second wave of myotome development. Development 125: 4259–4271

    PubMed  CAS  Google Scholar 

  • Kato N,Aoyama H (1998) Dermomyotomal origin of the ribs as revealed by extirpation and transplantation experiments in chick and quail embryos. Development 125: 3437–3443

    Google Scholar 

  • Kaul A, Koster M, Neuhaus H, Braun T, Tribioli C, Lufkin T (2000) Myf-5 revisited: loss of early myotome formation does not lead to a rib phenotype in homozygous Myf-5 mutant mice. Cell 102: 17–19

    Article  PubMed  CAS  Google Scholar 

  • Kitzmann M, Carnac G, Vandromme M, Primig M, Lamb NJC, Fernandez A (1998) The muscle regulatory factors Myod and Myf-5 undergo distinct cell cycle-specific expression in muscle cells. J Cell Biol 142: 1447–1459

    Article  PubMed  CAS  Google Scholar 

  • Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, Clevers H (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19: 379–383

    Article  PubMed  CAS  Google Scholar 

  • Kruger M, Mennerich D, Fees S, Schafer R, Mundlos S, Braun T (2001) Sonic hedgehog is a survival factor for hypaxial muscles during mouse development. Development 128: 743–752

    PubMed  CAS  Google Scholar 

  • Li L, Cserjesi P, Olson EN (1995) Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol 172: 280–292

    Article  PubMed  CAS  Google Scholar 

  • Lindon C, Montarras D, Pinset C (1998) Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J Cell Biol 140: 111–118

    Article  PubMed  CAS  Google Scholar 

  • Maroto M, Reshef R, Munsterberg AE, Koester S, Goulding M, Lassar AB (1997) Ectopic Pax-3 activates MyoD and Myf-5 expression in embryonic mesoderm and neural tissue. Cell 89: 139–148

    Article  PubMed  CAS  Google Scholar 

  • Murtaugh LC, Chyung JH, Lassar AB (1999) Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev 13: 225–237

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima Y, Hanaoka K, Hayasaka M, Esumi E, Li S, Nonaka I, Nabeshima Y (1993) Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364: 532–535

    Article  PubMed  CAS  Google Scholar 

  • Nofziger D, Miyamoto A, Lyons KM, Weinmaster G (1999) Notch signaling imposes two distinct blocks in the differentiation of C2C12 myoblasts. Development 126: 1689–1702

    PubMed  CAS  Google Scholar 

  • Odelberg SJ, Kollhoff A, Keating MT (2000) Dedifferentiation of mammalian myotubes induced by msxl. Cell 103: 1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Olson EN, Arnold H-H, Rigby PWJ, Wold BJ (1996) Know your neighbors: three phenotypes in null mutants of the myogenic bHLH gene MRF4. Cell 85: 1–4

    Article  PubMed  CAS  Google Scholar 

  • Ordahl CP (2000) Somitogenesis. Curr Top Dev Biol 48 (Pt 1 and 2)

    Google Scholar 

  • Ordahl CP, Williams BA, Denetclaw W (2000) Determination and morphogenesis in myogenic progenitor cells: an experimental embryological approach. Curr Top Dev Biol 48: 319–367

    Article  PubMed  CAS  Google Scholar 

  • Patapoutian A, Miner JH, Lyons GE, Wold B (1993) Isolated sequences from the linked myf-5 and MRF4 genes drive distinct patterns of muscle-specific expression in transgenic mice. Development 118: 61–69

    PubMed  CAS  Google Scholar 

  • Peters H, Wilm B, Sakai N, Imai K, Maas R, Balling R (1999) Paxl and Pax9 synergistically regulate vertebral column development. Development 126: 5399–5408

    PubMed  CAS  Google Scholar 

  • Pourquié O, Coltey M, Teillet M-A, Ordahl C, Le Douarin NM (1993) Control of dorsoventral patterning of somitic derivatives by notochord and floor plate. Proc Natl Acad Sci USA 90: 5242–5246

    Article  PubMed  Google Scholar 

  • Pourquié O, Fan C-M, Coltey M, Hirsinger E, Wanatabe Y, Bréant C, Francis-West P, Brickell P, Tessier-Lavigne M, Le Douarin N (1996) Lateral and axial signals involved in avian somite patterning: a role for BMP4. Cell 84: 461–471

    Article  PubMed  Google Scholar 

  • Pownall ME, Strunk KE, Emerson CP Jr (1996) Notochord signals control the transcriptional cascade of myogenic bHLH genes in somites of quail embryos. Development 122: 1475–1488

    PubMed  CAS  Google Scholar 

  • Rawls A, Valdez MR, Zhang W, Richardson J, Klein WH, Olson EN (1998) Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125: 2349–2358

    PubMed  CAS  Google Scholar 

  • Reshef R, Maroto M, Lassar AB (1998) Regulation of dorsal somitic cell fates: BMPs and Noggincontrol the timing and pattern of myogenic regulator expression. Genes Dev 12: 290–303

    Google Scholar 

  • Rudnicki MA, Schneglesberg PNJ, Stead RH, Braun T, Arnold H-H, Jaenisch R (1993) MyoD ormyf-5 is required for the formation of skeletal muscle. Cell 75: 1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Scaal M, Bonafede A, Dathe V, Sachs M, Cann G, Christ B, Brand-Saberi B (1999) SF/HGF is amediator between limb patterning and muscle development. Development 126: 4885–4893

    PubMed  CAS  Google Scholar 

  • Schafer K, Braun T (1999) Early specification of limb muscle precursor cells by the homeobox gene Lbxlh. Nat Genet 23: 213–216

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Tanaka M, Munsterberg A (2000) Expression of 13-catenin in the developing chick myotome is regulated by myogenic signals. Development 127: 4105–4113

    PubMed  CAS  Google Scholar 

  • Seale P, Rudnicki MA (2000) A new look at the origin, function, and “stem-cell” status of muscle satellite cells. Dev Biol 218: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777–786

    Article  PubMed  CAS  Google Scholar 

  • Slack JMW (1983) From egg to embryo: determinative events in early development. Cambridge University Press, Cambridge

    Google Scholar 

  • Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124: 2691–2700

    PubMed  CAS  Google Scholar 

  • Sosie D, Brand-Saberi B, Schmidt C, Christ B, Olson EN (1997) Regulation of paraxis expression and somite formation by ectoderm-and neural tube-derived signals. Dev Biol 185: 229–243

    Article  Google Scholar 

  • Spörle R (2001) Epaxial-adaxial-hypaxial regionalisation of the vertebrate somite: evidence for a somite organiser and a mirror-image duplication. Dev Genes Evol 211: 198–217

    Article  PubMed  Google Scholar 

  • Summerbell D, Ashby PR, Coutelle O, Cox D, Yee S, Rigby PW (2000) The expression of Myf5 in the developing mouse embryo is controlled by discrete and dispersed enhancers specific for particular populations of skeletal muscle precursors. Development 127: 3745–3757

    PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Buckingham M (2000) The birth of muscle progenitor cells in the mouse: spatiotemporal considerations. Curr Top Dev Biol 48: 225–268

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Spörle R (1998) Somite development: constructing the vertebrate body. Cell 92: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Vivarelli E, Cusella-De-Angelis G, Rocancourt D, Buckingham M, Cossu G (1994) Apopulation of myogenic cells derived from the mouse neural tube. Neuron 13: 813–821

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Rocancourt D, Buckingham M (1996a) Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384: 266–270

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Bober E, Babinet C, Pournin S, Arnold H, Buckingham M (1996b) Gene targeting the

    Google Scholar 

  • myf-5 locus with LacZ reveals expression of this myogenic factor in mature skeletal muscle fibres as well as early embryonic muscle. Dev Dyn 206:291–300

    Google Scholar 

  • Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M (1997) Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89: 127–138

    Article  PubMed  CAS  Google Scholar 

  • Tajbakhsh S, Vivarelli E, Kelly R, Papkoff J, Duprez D, Buckingham M, Cossu G (1998) Differential activation of Myf5 and MyoD by different Wnts in explants of mouse paraxial mesoderm and the later activation of myogenesis in the absence of Myf5. Development 125: 4155–4162

    PubMed  CAS  Google Scholar 

  • Tallquist MD, Weismann KE, Hellstrom M, Soriano P (2000) Early myotome specification regulates PDGFA expression and axial skeleton development. Development 127: 5059–5070

    PubMed  CAS  Google Scholar 

  • Teillet MA, Watanabe Y, Jeffs P, Duprez D, Lapointe F, Ledouarin NM (1998) Sonic Hedgehog is required for survival of both myogenic and chondrogenic somitic lineages. Development 125: 2019–2030

    PubMed  CAS  Google Scholar 

  • Tremblay P, Gruss P (1994) Pax: genes for mice and men. Pharmacol Therapeutics 61: 205–226

    Article  CAS  Google Scholar 

  • Tribioli C, Lufkin T (1999) The murine Bapxl homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development 126: 5699–5711

    PubMed  CAS  Google Scholar 

  • Valdez MR, Richardson JA, Klein WH, Olson EN (2000) Failure of Myf5 to support myogenic differentiation without Myogenin, MyoD, and MRF4. Dev Biol 219: 287–298

    Article  PubMed  CAS  Google Scholar 

  • Vivian JL, Gan L, Olson EN, Klein WH (1999) A hypomorphic myogenin allele reveals distinct myogenin expression levels required for viability, skeletal muscle development, and sternum formation. Dev Biol 208: 44–55

    Article  PubMed  CAS  Google Scholar 

  • Wachtler F, Christ B (1992) The basic embryology of skeletal muscle formation in vertebrates: the avian model. Semin Dev Biol 3: 217–227

    Google Scholar 

  • Wang Y, Jaenisch R (1997) Myogenin can substitute for Myf5 in promoting myogenesis but less efficiently. Development 124: 2507–2513

    PubMed  CAS  Google Scholar 

  • Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287: 1427–1430

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S et al. (1991) The MyoD gene family: nodal point during specification of the muscle cell lineage. Science 251: 761–766

    Article  PubMed  CAS  Google Scholar 

  • Weissman IL (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287: 1442–1446

    Article  PubMed  CAS  Google Scholar 

  • Wright MB, Hugo C, Seifert R, Disteche CM, Bowen-Pope DF (1998) Proliferating and migrating mesangial cells responding to injury express a novel receptor protein-tyrosine phosphatase in experimental mesangial proliferative glomerulonephritis. J Biol Chem 273: 23929–23937

    Article  PubMed  CAS  Google Scholar 

  • Xie T, Spradling AC (1998) decapentaplegic is essential for the maintenance and division of germline stem cells in the Drosophila ovary. Cell 94: 251–260

    Google Scholar 

  • Yoon JK, Olson EN, Arnold HH, Wold BJ (1997) Different MRF4 knockout alleles differentially disrupt Myf-5 expression: cis-regulatory interactions at the MRF4/Myf-5 locus. Dev Biol 188: 349–362

    Article  PubMed  CAS  Google Scholar 

  • Yun KS, Wold B (1996) Skeletal muscle determination and differentiation–story of a core regulatory network and its context. Curr Opin Cell Biol 8: 877–889

    Article  PubMed  CAS  Google Scholar 

  • Zhang XM, Ramalho-Santos M, McMahon AP (2001) Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell 105: 781–792

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tajbakhsh, S. (2002). The Genetics of Murine Skeletal Muscle Biogenesis. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45686-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45686-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07735-7

  • Online ISBN: 978-3-540-45686-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics