Skip to main content

Molecular Characterization of Early Cardiac Development

  • Chapter
Vertebrate Myogenesis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 38))

  • 189 Accesses

Abstract

Heart disease is a leading cause of death and disability in the Western world and a major factor in rising health care costs. Despite great efforts and remarkable advances made over the past years, the molecular basis for heart development and the evolution of acquired heart disease are still poorly defined (Chien 2000; Srivastava and Olson 2000). Approximately 10% of spontaneous abortions and stillborns are caused by severe cardiac malformations (Hoffman 1995a, 1995b). In addition, congenital heart defects including aberrant cardiac outflow septation, valve formation, aortic stenosis or hypoplastic left ventricle are prevalent with a frequency of 8 cases in 1000 births. Understanding cardiac development in cellular and molecular terms, therefore, is of major clinical relevance. Key genes in cardiac development are also important components of regulatory circuits in the adult heart (Chien 2000). For example, cardiacrestricted transcription factors such as Nkx2.5 and GATA4 have been implicated, both in cardiac development and under pathophysiological conditions, in the adult heart. GATA4 and its interacting protein partner NFATc have been identified as important components of a signalling pathway involved in generating cardiac hypertrophy (Molkentin et al. 1998). Point mutations in human NKX2.5 (CSX) have been found to cause multiple congenital malformations including atrial and ventricular septal defects, Ebstein’s anomaly and other tricuspid valve abnormalities. NKX2.5 mutations are also responsible for familial ventricular arrhythmias in the adult (Schott et al. 1998; Benson et al. 1999). Thus, understanding cardiac development at the molecular level will result in the identification of genetic networks, which are active in various pathophysiological processes in the adult heart as well. For further reading on cardiac development the reader is referred to other recent reviews on these topics (Chen and Fishman 2000; Lough and Sugi 2000; Rosenthal and Xavier-Neto 2000; Srivastava and Olson 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander J, Rothenberg M, Henry GL, Stainier DY (1999) Casanova plays an early and essential role in endoderm formation in zebrafish. Dev Biol 215: 343–357

    Google Scholar 

  • Andrée B, Duprez D, Vorbusch B, Arnold H-H, Brand T (1998) BMP-2 induces ectopic expression of cardiac lineage markers and interferes with somite formation in chicken embryos. Mech Dev 70: 119–131

    PubMed  Google Scholar 

  • Andrée B, Hillemann T, Kessler-Icekson G, Schmitt-John T, Jockusch H, Arnold HH, Brand T (2000) Isolation and characterization of the novel popeye gene family expressed in skeletal muscle and heart. Dev Biol 223: 371–382

    PubMed  Google Scholar 

  • Antin PB, Taylor RG, Yatskievych T (1994) Precardiac mesoderm is specified during gastrulation in quail. Dev Dyn 200: 144–154

    PubMed  CAS  Google Scholar 

  • Antin PB, Yatskievych T, Dominguez JL, Chieffi P (1996) Regulation of avian precardiac meso- derm development by insulin and insulin-like growth factors. J Cell Physiol 168: 42–50

    PubMed  CAS  Google Scholar 

  • Arai A, Yamamoto K, Toyama J (1997) Murine cardiac progenitor cells require visceral embryonic endoderm and primitive streak for terminal differentiation. Dev Dyn 210: 344–353

    PubMed  CAS  Google Scholar 

  • Auda-Boucher G, Bernard B, Fontaine-Perus J, Rouaud T, Mericksay M, Gardahaut MF (2000) Staging of the commitment of murine cardiac cell progenitors. Dev Biol 225: 214–225

    PubMed  CAS  Google Scholar 

  • Bao ZZ, Bruneau BG, Seidman JG, Seidman CE, Cepko CL (1999) Regulation of chamber-specific gene expression in the developing heart by Irx4. Science 283: 1161–1164

    PubMed  CAS  Google Scholar 

  • Barak Y, Nelson MC, Ong ES, Jones YZ, Ruiz-Lozano P, Chien KR, Koder A, Evans RM (1999) PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell 4: 585–595

    PubMed  CAS  Google Scholar 

  • Barron M, Gao M, Lough J (2000) Requirement for BMP and FGF signaling during cardiogenic induction in non-precardiac mesoderm is specific, transient, and cooperative. Dev Dyn 218: 383–393

    PubMed  CAS  Google Scholar 

  • Belo JA, Bachiller D, Agius E, Kemp C, Borges AC, Marques S, Piccolo S, De Robertis EM (2000) Cerberus-like is a secreted BMP and nodal antagonist not essential for mouse development. Genesis 26: 265–270

    PubMed  CAS  Google Scholar 

  • Benson DW, Silberbach GM, Kavanaugh-McHugh A, Cottrill C, Zhang Y, Riggs S, Smalls O, Johnson MC, Watson MS, Seidman JG, Seidman CE, Plowden J, Kugler JD (1999) Mutations in the cardiac transcription factor NKX2.5 affect diverse cardiac developmental pathways. J Clin Invest 104: 1567–1573

    PubMed  CAS  Google Scholar 

  • Biben C, Harvey RP (1997) Homeodomain factor Nkx2–5 controls left/right asymmetric expres- sion of bHLH gene eHand during murine heart development. Genes Dev 11:1357–1369 Biben C, Hatzistavrou T, Harvey RP (1998) Expression of NK-2 class homeobox gene Nkx2–6 in foregut endoderm and heart. Mech Dev 73: 125–127

    Google Scholar 

  • Bodmer R (1993) The gene tinman is required for specification of the heart and visceral muscles in Drosophila. Development 118: 719–729

    PubMed  CAS  Google Scholar 

  • Bodmer R, Jan LY, Jan YN (1990) A new homeobox-containing gene, msh-2, is transiently expressed early during mesoderm formation of Drosophila. Development 110:661–669 Boettger T, Stein S, Kessel M (1997) The chicken NKX2.8 homeobox gene. A novel member of the NK-2 gene family. Dev Gene Evol 1: 65–70

    Google Scholar 

  • Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382: 595–601

    Google Scholar 

  • Brand T, Andrée B, Schneider A, Buchberger A, Arnold HH (1997) Chicken NKx2–8, a novel homeobox gene expressed during early heart and foregut development. Mech Dev 64: 53–59

    PubMed  CAS  Google Scholar 

  • Bruneau BG, Bao ZZ, Tanaka M, Schott JJ, Izumo S, Cepko CL, Seidman JG, Seidman CE (2000) Cardiac expression of the ventricle-specific homeobox gene Irx4 is modulated by Nkx2–5 and dHand. Dev Biol 217: 266–277

    PubMed  CAS  Google Scholar 

  • Bruneau BG, Bao ZZ, Fatkin D, Xavier-Neto J, Georgakopoulos D, Maguire CT, Berul CI, Kass DA, Kuroski-De Bold ML, de Bold AJ, Conner DA, Rosenthal N, Cepko CL, Seidman CE, Seidman JG (2001) Cardiomyopathy in Irx4-deficient mice is preceded by abnormal ventricular gene expression. Mol Cell Biol 21: 1730–1736

    PubMed  CAS  Google Scholar 

  • Buchberger A, Pabst O, Brand T, Seidl K, Arnold HH (1996) Chick NKx-2.3 represents a novel family member of vertebrate homologues to the Drosophila homeobox gene tinman: differential expression of cNKx-2.3 and cNKx-2.5 during heart and gut development. Mech Dev 56: 151–163

    PubMed  CAS  Google Scholar 

  • Chen CY, Schwartz RJ (1996) Recruitment of the tinman homolog Nkx-2.5 by serum response factor activates cardiac alpha-actin gene transcription. Mol Cell Biol 16: 6372–6384

    PubMed  CAS  Google Scholar 

  • Chen J, Kubalak SW, Chien KR (1998) Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development 125: 1943–1949

    PubMed  CAS  Google Scholar 

  • Chen JN, Fishman MC (2000) Genetics of heart development. Trends Genet 16: 383–388

    PubMed  CAS  Google Scholar 

  • Chen Z, Friedrich GA, Soriano P (1994) Transcriptional enhancer factor 1 disruption by a retro- viral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev 8:2293–2301 Chien K (2000) Genomic circuits and the integrative biology of cardiac disease. Nature 407: 227–232

    Google Scholar 

  • Chin MT, Maemura K, Fukumoto S, Jain MK, Layne MD, Watanabe M, Hsieh CM, Lee ME (2000) Cardiovascular basic helix loop helix factor 1, a novel transcriptional repressor expressed preferentially in the developing and adult cardiovascular system. J Biol Chem 275: 6381–6387

    PubMed  CAS  Google Scholar 

  • Christoffels VM, Keijser AG, Houweling AC, Clout DE, Moorman AF (2000) Patterning the embryonic heart: identification of five mouse Iroquois homeobox genes in the developing heart. Dev Biol 224: 263–274

    PubMed  CAS  Google Scholar 

  • Cohen-Gould L, Mikawa T (1996) The fate diversity of mesodermal cells within the heart field during chicken early embryogenesis. Dev Biol 177: 265–273

    PubMed  CAS  Google Scholar 

  • Colas J, Schoenwolf GC (2000) Subtractive hybridization identifies chick-cripto, a novel EGF-CFC ortholog expressed during gastrulation, neurulation and early cardiogenesis. Gene 255: 205–217

    PubMed  CAS  Google Scholar 

  • Colas JF, Lawson A, Schoenwolf GC (2000) Evidence that translation of smooth muscle alpha-actin mRNA is delayed in the chick promyocardium until fusion of the bilateral heart-forming regions. Dev Dyn 218: 316–330

    PubMed  CAS  Google Scholar 

  • Crossley PH, Martin GR (1995) The mouse Fgf8 gene encodes a family of polypeptides and is expressed in regions that direct outgrowth and patterning in the developing embryo. Development 121: 439–451

    PubMed  CAS  Google Scholar 

  • Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380: 66–68

    PubMed  CAS  Google Scholar 

  • Davis DL, Wessels A, Burch JB (2000) An Nkx-dependent enhancer regulates cGATA-6 gene expression during early stages of heart development. Dev Biol 217: 310–322

    PubMed  CAS  Google Scholar 

  • DeHaan R (1965) Morphogenesis of the vertebrate heart. In: DeHaan R, Ursprung H (eds) Organogenesis. Holt, Rinehart and Winston, New York, pp 377–419

    Google Scholar 

  • Dersch H, Zile M (1993) Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev Biol 160: 424–433

    PubMed  CAS  Google Scholar 

  • Dettman RW, Denetclaw W Jr, Ordahl CP, Bristow J (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193: 169–181

    PubMed  CAS  Google Scholar 

  • Ding J, Yang L, Yan YT, Chen A, Desai N, Wynshaw-Boris A, Shen MM (1998) Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395: 702–707

    PubMed  CAS  Google Scholar 

  • Dono R, Scalera L, Pacifico F, Acampora D, Persico MG, Simeone A (1993) The murine cripto gene: expression during mesoderm induction and early heart morphogenesis. Development 118: 1157–1168

    PubMed  CAS  Google Scholar 

  • Dudley A, Robertson E (1997) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208: 349–362

    PubMed  CAS  Google Scholar 

  • Eisenberg CA, Eisenberg LM (1999) WNT11 promotes cardiac tissue formation of early mesoderm. Dev Dyn 216: 45–58

    PubMed  CAS  Google Scholar 

  • Evans SM (1999) Vertebrate tinman homologues and cardiac differentiation. Semin Cell Dev Biol 10: 73–83

    PubMed  CAS  Google Scholar 

  • Fossett N, Zhang Q, Gajewski K, Choi CY, Kim Y, Schulz RA (2000) The multitype zinc-finger protein U-shaped functions in heart cell specification in the Drosophila embryo. Proc Natl Acad Sci USA 97: 7348–7353

    PubMed  CAS  Google Scholar 

  • Frasch M (1995) Induction of visceral and cardiac mesoderm by ectodermal Dpp in the early Drosophila embryo. Nature 374: 464–467

    PubMed  CAS  Google Scholar 

  • Fu Y, Yan W, Mohun TJ, Evans SM (1998) Vertebrate tinman homologues XNkx2–3 and XNkx2–5 are required for heart formation in a functionally redundant manner. Development 125: 4439–4449

    PubMed  CAS  Google Scholar 

  • Gaio U, Schweickert A, Fischer A, Garatt AN, Müller T, Özcelik C, Lankes W, Strehle M, Britsch S, Blum M, Birchmeier C (1999) A role of the cryptic gene in the correct stablishment of the left-right axis. Curr Biol 9: 1339–1342

    PubMed  CAS  Google Scholar 

  • Gajewski K, Fossett N, Molkentin JD, Kim Y, Choi CY, Schulz RA (1999) The zink finger proteins Pannier and GATA4 function as cardiogenic factors in Drosophila. Development 126: 56795688

    Google Scholar 

  • Gannon M, Bader D (1995) Initiation of cardiac differentiation occurs in the absence of anterior endoderm. Development 121: 2439–2450

    PubMed  CAS  Google Scholar 

  • Garcia-Martinez V, Schoenwolf G (1993) Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 159: 706–719

    PubMed  CAS  Google Scholar 

  • Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R, Lemke G (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378: 390394

    Google Scholar 

  • Glinka A, Wu W, Onichtchouk D, Blumenstock C, Niehrs C (1997) Head induction by simultaneous repression of Bmp and Wnt signalling in Xenopus. Nature 389: 517–519

    PubMed  CAS  Google Scholar 

  • Grepin C, Nemer G, Nemer M (1997) Enhanced cardiogenesis in embryonic stem cells over-expressing the GATA-4 transcription factor. Development 124: 2387–2395

    PubMed  CAS  Google Scholar 

  • Gritsman K, Zhang J, Cheng S, Heckscher E, Talbot WS, Schier AF (1999) The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97: 121–132

    PubMed  CAS  Google Scholar 

  • Grow MW, Krieg PA (1998) Tinman function is essential for vertebrate heart development: elimination of cardiac differentiation by dominant inhibitory mutants of the tinman-related genes, XNkx2–3 and XNkx2–5. Dev Biol 204: 187–196

    PubMed  CAS  Google Scholar 

  • Grunz H (1999) Amphibian embryos as a model system for organ engineering: in vitro induction and rescue of the heart anlage. Int J Dev Biol 43: 361–364

    PubMed  CAS  Google Scholar 

  • Ho E, Shimada Y (1978) Formation of the epicardium studied with the scanning electron microscope. Dev Biol 66: 579–585

    PubMed  CAS  Google Scholar 

  • Hoffman JI (1995a) Incidence of congenital heart disease: I. Postnatal incidence. Pediatr Cardiol 16: 103–13

    PubMed  CAS  Google Scholar 

  • Hoffman JI (1995b) Incidence of congenital heart disease: II. Prenatal incidence. Pediatr Cardiol 16: 155–65

    PubMed  CAS  Google Scholar 

  • Inagaki T, Garcia-Martinez V, Schoenwolf GC (1993) Regulative ability of the prospective cardiogenic and vasculogenic areas of the primitive streak during avian gastrulation. Dev Dyn 197: 57–68

    PubMed  CAS  Google Scholar 

  • Jaber M, Koch WJ, Rockman H, Smith B, Bond RA, Sulik KK, Ross J Jr, Lefkowitz RJ, Caron MG, Giros B (1996) Essential role of beta-adrenergic receptor kinase 1 in cardiac development and function. Proc Natl Acad Sci USA 93: 12974–12979

    PubMed  CAS  Google Scholar 

  • Jiang Y, Tarzami S, Burch J, Evans T (1998) Common role for each of the cGATA4/5/6 genes in the regulation of cardiac morphogenesis. Dev Gen 22: 263–277

    CAS  Google Scholar 

  • Kasahara H, Usheva A, Ueyama T, Aoki H, Horikoshi N, Izumo S (2000) Characterization of homo- and heterodimerization of cardiac Csx/Nkx2.5 homeoprotein. J Biol Chem 276: 4570–4580

    PubMed  Google Scholar 

  • Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, Vonesch JL, Dolle P, Chambon P (1994) Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78: 987–1003

    PubMed  CAS  Google Scholar 

  • Kastner P, Messaddeq N, Mark M, Wendling O, Grondona JM, Ward S, Ghyselinck N, Chambon P (1997) Vitamin A deficiency and mutations of RXRalpha, RXRbeta and RARalpha lead to early differentiation of embryonic ventricular cardiomyocytes. Development 124: 4749–4758

    Google Scholar 

  • Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77: 211–215

    PubMed  CAS  Google Scholar 

  • Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S (1997) The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. Development 124: 4457–4466

    PubMed  CAS  Google Scholar 

  • Kodera Y, Takeyama K, Murayama A, Suzawa M, Masuhiro Y, Kato S (2000) Ligand type-specific interactions of peroxisome proliferator-activated receptor gamma with transcriptional co-activators. J Biol Chem 275: 33201–33204

    PubMed  CAS  Google Scholar 

  • Kokan-Moore N-P, Bolender DL, Lough J (1991) Secretion of Inhibin /3A by endoderm cultured from early embryonic chicken. Dev Biol 146: 242–245

    PubMed  CAS  Google Scholar 

  • Komada M, Soriano P (1999) Hrs, a FYVE finger protein localized to early endosomes, is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes Dev 13: 1475–1485

    PubMed  CAS  Google Scholar 

  • Kostetskii I, Jiang Y, Kostetskaia E, Yuan S, Evans T, Zile M (1999) Retinoid signaling required for normal heart development regulates GATA-4 in a pathway distinct from cardiomyocyte differentiation. Dev Biol 206: 206–218

    PubMed  CAS  Google Scholar 

  • Kreidberg JA, Sariola H, Loring JM, Maeda M, Pelletier J, Housman D, Jaenisch R (1993) WT-1 is required for early kidney development. Cell 74: 679–691

    PubMed  CAS  Google Scholar 

  • Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16: 279–283

    PubMed  CAS  Google Scholar 

  • Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM (1997) GATA4 transcription factor is required for ventral morphogenesis and heart tube formation. Genes Dev 11: 1048–1060

    PubMed  CAS  Google Scholar 

  • Kupperman E, An S, Osborne N, Waldron S, Stainier DY (2000) A sphingosine- 1 -phosphate receptor regulates cell migration during vertebrate heart development. Nature 406: 192–195

    PubMed  CAS  Google Scholar 

  • Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, Labow MA (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121: 489–503

    PubMed  CAS  Google Scholar 

  • Ladd AN, Yatskievych TA, Antin PB (1998) Regulation of avian cardiac myogenesis by activin/TGFbeta and bone morphogenetic proteins. Dev Biol 204: 407–419

    PubMed  CAS  Google Scholar 

  • LeCouter JE, Kablar B, Whyte PF,Ying C, Rudnicki MA (1998) Strain-dependent embryonic lethal- ity in mice lacking the retinoblastoma-related p130 gene. Development 125: 4669–4679

    CAS  Google Scholar 

  • Lee K-F, Simon H, Chen H, Bates B, Hung M-C, Hauser C (1995) Requirement for neuregulin recep- tor erbB2 in neural and cardiac development. Nature 378: 394–398

    PubMed  CAS  Google Scholar 

  • Lee RK, Stainier DY, Weinstein BM, Fishman MC (1994) Cardiovascular development in the zebrafish. II. Endocardial progenitors are sequestered within the heart field. Development 120: 3361–3366

    Google Scholar 

  • Leimeister C, Externbrink A, Klamt B, Gessler M (1999) Hey genes: a novel subfamily of hairy-and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Dev 85: 173–177

    PubMed  CAS  Google Scholar 

  • Liberatore CM, Searcy-Schrick RD, Yutzey KE (2000) Ventricular expression of tbx5 inhibits normal heart chamber development. Dev Biol 223: 169–180

    PubMed  CAS  Google Scholar 

  • Lien CL, Wu C, Mercer B, Webb R, Richardson JA, Olson EN (1999) Control of early cardiac-specific transcription of Nkx2–5 by a GATA-dependent enhancer. Development 126: 7584

    Google Scholar 

  • Lin Q, Schwarz J, Bucana C, Olson EN (1997) Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276: 1404–1407

    PubMed  CAS  Google Scholar 

  • Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP (1993) Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119: 419–431

    PubMed  CAS  Google Scholar 

  • Lough J, Sugi Y (2000) Endoderm and heart development. Dev Dyn 217: 327–342

    PubMed  CAS  Google Scholar 

  • Lough J, Barron M, Brogley M, Sugi Y, Bolender DL, Zhu X (1996) Combined BMP-2 and FGF-4, but neither factor alone, induces cardiogenesis in non-precardiac embryonic mesoderm. Dev Biol 178: 198–202

    PubMed  CAS  Google Scholar 

  • Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP (1995) Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev 9: 1654–1666

    PubMed  CAS  Google Scholar 

  • Männer J (1993) Experimental study on the formation of the epicardium in chick embryos. Anat Embryol 187: 281–289

    PubMed  Google Scholar 

  • Markwald R, Trusk T, Moreno-Rodriguez R (1999) Formation and septation of the tubular heart. Integrating dynamics of morphology with emerging molecular concepts. In: de la Cruz M, Markwald R (eds) Living morphogenesis of the heart. Birkhäuser, Boston, pp 43–84

    Google Scholar 

  • Marvin MJ, Di Rocco G, Gardiner A, Bush SM, Lassar AB (2001) Inhibition of Wnt activity induces heart formation from posterior mesoderm. Genes Dev 15: 316–327

    PubMed  CAS  Google Scholar 

  • Meyer D, Birchmeier C (1995) Multiple essential functions of neuregulin in development. Nature 378: 386–390

    PubMed  CAS  Google Scholar 

  • Meyers EN, Martin GR (1999) Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285: 403–406

    PubMed  CAS  Google Scholar 

  • Meyers EN, Lewandoski M, Martin GR (1998) An Fgf8 mutant allelic series generated by Cre-and Flp-mediated recombination. Nat Genet 18: 136–141

    PubMed  CAS  Google Scholar 

  • Mikawa T, Fischman DA (1996) The polyclonal origin of myocyte lineages. Annu Rev Physiol 58: 509–521

    PubMed  CAS  Google Scholar 

  • Mjaatvedt CH, Yamamura H, Capehart AA, Turner D, Markwald RR (1998) The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev Biol 202: 56–66

    PubMed  CAS  Google Scholar 

  • Moens CB, Stanton BR, Parada LF, Rossant J (1993) Defects in heart and lung development in compound heterozygotes for two different targeted mutations at the N-myc locus. Development 119: 485–499

    PubMed  CAS  Google Scholar 

  • Molkentin JD (2000) The Zinc Finger-containing Transcription Factors GATA-4, -5, and -6. Ubiquitously expressed regulators of tissue-specific gene expression. J Biol Chem 275: 3894938952

    Google Scholar 

  • Molkentin JD, Lin Q, Duncan SA, Olson EN (1997) Requirement of the transcription factor GATA4 for heart tube formation and ventral morphogenesis. Genes Dev 11: 1061–1072

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93: 215–228

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Antos C, Mercer B, Taigen T, Miano JM, Olson EN (2000a) Direct activation of a GATA6 cardiac enhancer by Nkx2.5: evidence for a reinforcing regulatory network of Nkx2.5 and GATA transcription factors in the developing heart. Dev Biol 217: 301–309

    PubMed  CAS  Google Scholar 

  • Molkentin JD, Tymitz KM, Richardson JA, Olson EN (2000b) Abnormalities of the genitourinary tract in female mice lacking GATA5. Mol Cell Biol 20: 5256–5260

    PubMed  CAS  Google Scholar 

  • Montgomery M, Litvin J, Gonzalez-Sanchez A, Bader D (1994) Staging of commitment and differentiation of avian cardiac myocytes. Dev Biol 164: 63–71

    PubMed  CAS  Google Scholar 

  • Monzen K, Shiojima I, Hiroi Y, Kudoh S, Oka T, Takimoto E, Hayashi D, Hosoda T, Habara-Ohkubo A, Nakaoka T, Fujita T, Yazaki Y, Komuro I (1999) Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4. Mol Cell Biol 19: 7096–7105

    PubMed  CAS  Google Scholar 

  • Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedi A (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126: 1845–1857

    PubMed  CAS  Google Scholar 

  • Morin S, Charron F, Robitaille L, Nemer M (2000) GATA-dependent recruitment of MEF2 proteins to target promoters. EMBO J 19: 2046–2055

    PubMed  CAS  Google Scholar 

  • Morrisey EE, Tang Z, Sigrist K, Lu MM, Jiang F, Ip HS, Parmacek MS (1998) GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo. Genes Dev 12: 3579–3590

    PubMed  CAS  Google Scholar 

  • Moss JB, Xavier-Neto J, Shapiro MD, Nayeem SM, McCaffery P, Drager UC, Rosenthal N (1998) Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol 199: 55–71

    PubMed  CAS  Google Scholar 

  • Nakagawa O, Nakagawa M, Richardson JA, Olson EN, Srivastava D (1999) HRT1, HRT2, and HRT3: a new subclass of bHLH transcription factors marking specific cardiac, somitic, and pharyngeal arch segments. Dev Biol 216: 72–84

    PubMed  CAS  Google Scholar 

  • Nakagawa O, McFadden DG, Nakagawa M, Yanagisawa H, Hu T, Srivastava D, Olson EN (2000) Members of the HRT family of basic helix-loop-helix proteins act as transcriptional repressors downstream of Notch signaling. Proc Natl Acad Sci USA 97: 13655–13660

    PubMed  CAS  Google Scholar 

  • Narita N, Bielinska M, Wilson DB (1997) Wild-type endoderm abrogates the ventral develop- mental defects associated with GATA-4 deficiency in the mouse. Dev Biol 189: 270–274

    PubMed  CAS  Google Scholar 

  • Nikolova M, Chen X, Lufkin T (1997) Nkx2.6 expression is transiently and specifically restricted to the branchial region of pharyngeal-stage mouse embryos. Mech Dev 69: 215–218

    PubMed  CAS  Google Scholar 

  • Pabst O, Schneider A, Brand T, Arnold HH (1997) The mouse Nkx2–3 homeodomain gene is expressed in gut mesenchyme during pre-and postnatal mouse development. Dev Dyn 209: 29–35

    PubMed  CAS  Google Scholar 

  • Park M, Wu X, Golden K, Axelrod JD, Bodmer R (1996) The wingless signaling pathway is directly involved in Drosophila heart development. Dev Biol 177: 104–116

    PubMed  CAS  Google Scholar 

  • Parlow MH, Bolender DL, Kokan-Moore NP, Lough J (1991) Localization of bFGF-like proteins as punctate inclusions in the pre-septation myocardium of the chicken embryo. Dev Biol 146: 139–147

    PubMed  CAS  Google Scholar 

  • Pereira FA, Qiu Y, Zhou G, Tsai MJ, Tsai SY (1999) The orphan nuclear receptor COUP-TFII is required for angiogenesis and heart development. Genes Dev 13: 1037–1049

    PubMed  CAS  Google Scholar 

  • Pfeffer PL, De Robertis EM, Izpisua-Belmonte JC (1997) Crescent, a novel chick gene encoding a Frizzled-like cysteine-rich domain, is expressed in anterior regions during early embryo-genesis. Int J Dev Biol 41: 449–458

    PubMed  CAS  Google Scholar 

  • Reecy JM, Yamada M, Cummings K, Sosic D, Chen C-Y, Eichele G, Olson EN, Schwart RJ (1997) Chicken Nkx-2.8: a novel homeobox gene expressed in early heart progenitor cells and pharyngeal pouch-2 and -3 endoderm. Dev Biol 188: 296–311

    Google Scholar 

  • Reecy JM, Li X, Yamada M, DeMayo FJ, Newman CS, Harvey RP, Schwartz RJ (1999) Identification of upstream regulatory regions in the heart-expressed homeobox gene Nkx2–5. Development 126: 839–849

    PubMed  CAS  Google Scholar 

  • Reifers F, Walsh EC, Leger S, Stainier DY, Brand M (2000) Induction and differentiation of the zebrafish heart requires fibroblast growth factor 8 (fgf8/acerebellar). Development 127: 225–235

    PubMed  CAS  Google Scholar 

  • Reiter JF, Alexander J, Rodaway A, Yelon D, Patient R, Holder N, Stainier DY (1999) Gata5 is required for the development of the heart and endoderm in zebrafish. Genes Dev 13: 2983–2995

    PubMed  CAS  Google Scholar 

  • Reiter JF, Kikuchi Y, Stainier DY (2001) Multiple roles for Gata5 in zebrafish endoderm formation. Development 128: 125–135

    PubMed  CAS  Google Scholar 

  • Riley PR, Gertsenstein M, Dawson K, Cross JC (2000) Early exclusion of Handl-deficient cells from distinct regions of the left ventricular myocardium in chimeric mouse embryos. Dev Biol 227: 156–168

    PubMed  CAS  Google Scholar 

  • Rodriguez Esteban C, Capdevila J, Economides AN, Pascual J, Ortiz A, Izpisua Belmonte JC (1999) The novel Cer-like protein Caronte mediates the establishment of embryonic left-right asymmetry. Nature 401: 243–251

    Google Scholar 

  • Roebroek AJ, Umans L, Pauli IG, Robertson EJ, van Leuven F, Van de Ven WJ, Constam DB (1998) Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development 125: 4863–4876

    PubMed  CAS  Google Scholar 

  • Rosenquist GC (1970) Cardia bifida in chick embryos: anterior and posterior defects produced by transplanting tritiated thymidine-labeled grafts medial to the heart-forming regions. Teratology 3: 135–142

    PubMed  CAS  Google Scholar 

  • Rosenthal N, Xavier-Neto J (2000) From the bottom of the heart: anteroposterior decisions in cardiac muscle differentiation. Curr Opin Cell Biol 12: 742–746

    PubMed  CAS  Google Scholar 

  • Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J, Inoue T (1999) MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development 126: 3437–3447

    PubMed  CAS  Google Scholar 

  • Salomon DS, Bianco C, De Santis M (1999) Cripto: a novel epidermal growth factor ( EGF)-related peptide in mammary gland development and neoplasia. Bioessays 21: 61–70

    Google Scholar 

  • Schlange T, Andree B, Arnold H, Brand T (2000a) Expression analysis of the chicken homologue of CITED2 during early stages of embryonic development. Mech Dev 98: 157–160

    PubMed  CAS  Google Scholar 

  • Schlange T, Andree B, Arnold HH, Brand T (2000b) BMP2 is required for early heart development during a distinct time period. Mech Dev 91: 259–270

    PubMed  CAS  Google Scholar 

  • Schlange T, Schnipkoweit I, Andrée B, Ebert A, Zile M, Arnold H, Brand T (2001) Chick CFC controls Leftyl expression in the embryonic midline and nodal expression in the lateral plate. Dev Biol 234: 376–389

    PubMed  CAS  Google Scholar 

  • Schneider VA, Mercola M (1999) Spatially distinct head and heart inducers within the Xenopus organizer region. Curr Biol 9: 800–809

    PubMed  CAS  Google Scholar 

  • Schneider VA, Mercola M (2001) Wnt antagonism initiates cardiogenesis in Xenopus laevis. Genes Dev 15: 304–315

    PubMed  CAS  Google Scholar 

  • Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NKX2–5. Science 281: 108–111

    PubMed  CAS  Google Scholar 

  • Schultheiss TM, Xydas S, Lassar AB (1995) Induction of avian cardiac myogenesis by anterior endoderm. Development 121: 4203–4214

    PubMed  CAS  Google Scholar 

  • Schultheiss T, Burch J, Lassar A (1997) A role for bone morphogenetic proteins in the induction of cardiac myogenesis. Genes Dev 11: 451–462

    PubMed  CAS  Google Scholar 

  • Searcy RD, Vincent EB, Liberatore CM, Yutzey KE (1998) A GATA-dependent nkx-2.5 regulatory element activates early cardiac gene expression in transgenic mice. Development 125: 44614470

    Google Scholar 

  • Sepulveda JL, Belaguli N, Nigam V, Chen CY, Nemer M, Schwartz RJ (1998) GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol Cell Biol 18: 3405–3415

    PubMed  CAS  Google Scholar 

  • Shawlot W, Min Deng J, Wakamiya M, Behringer RR (2000) The cerberus-related gene, Cerrl, is not essential for mouse head formation. Genesis 26: 253–258

    Google Scholar 

  • Shen M, Schier A (2000) The EGF-CFC gene family in vertebrate development. Trends Genet 16: 303–309

    PubMed  CAS  Google Scholar 

  • Shi Y, Katsev S, Cai C, Evans S (2000) BMP signaling is required for heart formation in vertebrates. Dev Biol 224: 226–237

    PubMed  CAS  Google Scholar 

  • Slack JMW (1991) From egg to embryo. Regional specification in early development, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith SJ, Kotecha S, Towers N, Mohun TJ (2000) Xenopus hand2 expression marks anterior vascular progenitors but not the developing heart. Dev Dyn 219: 575–581

    Google Scholar 

  • Solloway MJ, Robertson EJ (1999) Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126: 17531768

    Google Scholar 

  • Srivastava D, Olson E (2000) A genetic blueprint for cardiac development. Nature 407:221–226 Stainier DY, Lee RK, Fishman MC (1993) Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. Development 119: 31–40

    Google Scholar 

  • Stanley EG, Biben C, Allison J, Hartley L, Wicks IP, Campbell IK, McKinley M, Barnett L, Koentgen F, Robb L, Harvey RP (2000) Targeted insertion of a lacZ reporter gene into the mouse Cerl locus reveals complex and dynamic expression during embryogenesis. Genesis 26: 259–264

    PubMed  CAS  Google Scholar 

  • Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM (1994) RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev 8: 1007–1018

    PubMed  CAS  Google Scholar 

  • Sugi Y, Lough J (1994) Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev Dyn 200: 155–162

    PubMed  CAS  Google Scholar 

  • Sugi Y, Lough J (1995) Activin-A and FGF-2 mimic the inductive effects of anterior endoderm on terminal cardiac myogenesis. Dev Biol 168: 567–574

    PubMed  CAS  Google Scholar 

  • Tam PP, Parameswaran M, Kinder SJ, Weinberger RP (1997) The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation. Development 124: 1631–1642

    PubMed  CAS  Google Scholar 

  • Tanaka M,Yamasaki N, Izumo S (2000) Phenotypic characterization of the murine Nkx2.6 homeobox gene by gene targeting. Mol Cell Biol 20: 2874–2879

    PubMed  CAS  Google Scholar 

  • Tevosian S, Deconinck A, Tanaka M, Schinke M, Litovsky S, Izumo S, Fujiwara Y, Orkin S (2000) FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101: 729–739

    Google Scholar 

  • Tokuyasu K (1990) Co-development of embryonic myocardium and myocardial circulation. In: Clark E, Takao A (eds) Developmental cardiology: morphogenesis and function. Futura, Mt Kisco, pp 205–218

    Google Scholar 

  • Torres MA, Yang-Snyder JA, Purcell SM, DeMarais AA, McGrew LL, Moon RT (1996) Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development. J Cell Biol 133: 1123–1137

    PubMed  CAS  Google Scholar 

  • Tran CM, Sucov HM (1998) The RXRalpha gene functions in a non-cell-autonomous manner during mouse cardiac morphogenesis. Development 125: 1951–1956

    PubMed  CAS  Google Scholar 

  • Tzahor E, Lassar AB (2001) Wnt signals from the neural tube block ectopic cardiogenesis. Genes Dev 15: 255–260

    PubMed  CAS  Google Scholar 

  • Weber H, Symes CE, Walmsley ME, Rodaway AR, Patient RK (2000) A role for GATA5 in Xenopus endoderm specification. Development 127: 4345–4360

    PubMed  CAS  Google Scholar 

  • Wei Y, Mikawa T (2000) Fate diversity of primitive streak cells during heart field formation in ovo. Dev Dyn 219: 505–513

    PubMed  CAS  Google Scholar 

  • Wu H, Lee S, Gao J, X L, Iruela-Arispe M (1999) Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126: 3597–3605

    PubMed  CAS  Google Scholar 

  • Wu X, Golden K, Bodmer R (1995) Heart development in Drosophila requires the segment polarity gene wingless. Dev Biol 169: 619–628

    PubMed  CAS  Google Scholar 

  • Xavier-Neto J, Neville CM, Shapiro MD, Houghton L, Wang GF, Nikovits W, Stockdale FE, Rosenthal N (1999) A retinoic acid-inducible transgenic marker of sino-atrial development in the mouse heart. Development 126: 2677–2687

    PubMed  CAS  Google Scholar 

  • Xavier-Neto J, Shapiro MD, Houghton L, Rosenthal N (2000) Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev Biol 219: 129–141

    PubMed  CAS  Google Scholar 

  • Xu C, Liguori G, Adamson ED, Persico MG (1998) Specific arrest of cardiogenesis in cultured embryonic stem cells lacking Cripto-1. Dev Biol 196: 237–247

    PubMed  CAS  Google Scholar 

  • Xu C, Liguori G, Persico MG, Adamson ED (1999) Abrogation of the Cripto gene in mouse leads to failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes. Development 126: 483–494

    PubMed  CAS  Google Scholar 

  • Yamada M, Szendro PI, Prokscha A, Schwartz RJ, Eichele G (1999) Evidence for a role of Smad6 in chick cardiac development. Dev Biol 215: 48–61

    PubMed  CAS  Google Scholar 

  • Yan Y-T, Gritsman K, Ding J, Burdine RD, Corrales JD, Price SM, Talbot WS, Schier AF, Shen MM (1999) Conserved requirement for EGF-CFC genes in vertebrate left-right axis formation. Genes Dev 13: 2527–2537

    PubMed  CAS  Google Scholar 

  • Yatskievych TA, Ladd AN, Antin PB (1997) Induction of cardiac myogenesis in avian pregastrula epiblast: the role of the hypoblast and activin. Development 124: 2561–2570

    PubMed  CAS  Google Scholar 

  • Yelon D, Ticho B, Halpern ME, Ruvinsky I, Ho RK, Silver LM, Stainier DY (2000) The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127: 2573–2582

    PubMed  CAS  Google Scholar 

  • Yokouchi Y, Vogan KJ, Pearse RV 2nd, Tabin CJ (1999) Antagonistic signaling by Caronte, a novel Cerberus-related gene, establishes left-right asymmetric gene expression. Cell 98: 573–583

    PubMed  CAS  Google Scholar 

  • Yoshida K, Taga T, Saito M, Suematsu S, Kumanogoh A, Tanaka T, Fujiwara H, Hirata M,Yamagami T, Nakahata T, Hirabayashi T, Yoneda Y, Tanaka K, Wang WZ, Mori C, Shiota K, Yoshida N, Kishimoto T (1996) Targeted disruption of gp130, a common signal transducer for the interleukin 6 family of cytokines, leads to myocardial and hematological disorders. Proc Natl Acad Sci USA 93: 407–411

    CAS  Google Scholar 

  • Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122: 2977–2986

    PubMed  CAS  Google Scholar 

  • Zhu L, Marvin MJ, Gardiner A, Lassar AB, Mercola M, Stern CD, Levin M (1999a) Cerberus regulates left-right asymmetry of the embryonic head and heart. Curr Biol 9: 931–938

    PubMed  CAS  Google Scholar 

  • Zhu X, Sasse J, Lough J (1999b) Evidence that FGF receptor signaling is necessary for endoderm- regulated development of precardiac mesoderm. Mech Ageing Dev 108: 77–85

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brand, T., Andrée, B., Schlange, T. (2002). Molecular Characterization of Early Cardiac Development. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45686-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45686-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07735-7

  • Online ISBN: 978-3-540-45686-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics