Skip to main content

Development of Visceral Smooth Muscle

  • Chapter
Vertebrate Myogenesis

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 38))

Abstract

The wide distribution of smooth muscle in the body is matched by patterns of development that differ in different organs. This review article deals with the origin, differentiation and growth of the smooth musculature of viscera. Only passing references will be made to the development of vascular musculature and to myoepithelial cells and myofibroblasts. The development of smooth muscle should be seen in the context of the special properties of this tissue. Smooth musculature is abundant (Table 1) and is found in all parts of the body; it performs with its contractions and its tone disparate functions, it grows while it is mechanically active, it is under the influence of local and systemic chemical factors and of mechanical factors, it produces the extracellular stroma (or matrix) that has the function of an intramuscular tendon and it adapts its growth and trophic condition to the functional demand imposed. The large assemblies of smooth muscle cells in the wall of viscera — as opposed to small groups or scattered muscle cells elsewhere in the body — undergo processes of development that consist not only in the cellular differentiation of a mesenchymal cell into a specialized contractile cell (cellular myogenesis), but also in the self-assembly and organization of the tissue, with the production of stroma and other features of supracellular organization (muscle differentiation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akeson RA, Wujek JR, Roe S, Warren SL, Small SJ (1988) Smooth muscle cells transiently express NCAM. Mol Brain Res 4: 107–120

    CAS  Google Scholar 

  • Bal HS, Getty R (1970) Postnatal growth of the swine uterus from birth to six months. Growth 34: 15–30

    PubMed  CAS  Google Scholar 

  • Baskin LS, Hayward SW, Young PF, Cunha GR (1996) Ontogeny of the rat bladder: smooth muscle and epithelial differentiation. Acta Anat 155: 163–171

    PubMed  CAS  Google Scholar 

  • Bellairs R, Sanders EF, Lash JW (eds) (1992) Formation and differentiation of early embryonic mesoderm. Plenum, New York

    Google Scholar 

  • Bennett T, Cobb JLS (1969) Studies of the avian gizzard: the development of the gizzard and its innervation. Z Zellforsch Mikrosk Anat 98: 599–621

    PubMed  CAS  Google Scholar 

  • Blessing MH, Müller G (1973) Myoglobin concentration in the chicken, especially in the gizzard. Comp Biochem Physiol [A] 47: 534–540

    Google Scholar 

  • Bo WJ, Odor DL, Rothrock ML (1968) Ultrastructure of uterine smooth muscle following progesterone or progesterone-estrogen treatment. Anat Rec 163: 121–132

    Google Scholar 

  • Borirakchanyavat S, Baskin LS, Kogan BA, Cunha GR (1997) Smooth and striated muscle development in the intrinsic urethral sphincter. J Urol 158: 1119–1122

    PubMed  CAS  Google Scholar 

  • Brent L, Stephens FD (1975) The response of smooth muscle cells in the rabbit urinary bladder to outflow obstruction. Invest Urol 12: 494–502

    PubMed  CAS  Google Scholar 

  • Brittingham J, McHugh K (1992) Characterization of isoactin gene expression in primary cultures of rat gastrointestinal smooth muscle cells. Mol Biol Cell 5: 158a

    Google Scholar 

  • Brody JR, Cunha GR (1989a) Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice. I. Normal development. Am J Anat 186: 1–20

    CAS  Google Scholar 

  • Brody JR, Cunha GR (1989b) Histologic, morphometric, and immunocytochemical analysis of myometrial development in rats and mice. II. Effect of DES on development. Am J Anat 186: 21–42

    CAS  Google Scholar 

  • Buoro S, Ferrarese P, Chiavegato A, Roelofs M, Scatena M, Pauletto P

    Google Scholar 

  • Passerini-Glazel G, Pagano F, Sartore S (1993) Myofibroblast-derived smooth muscle cells during remodelling of rabbit urinary bladder wall induced by partial outflow obstruction. Lab Invest 69: 589–602

    PubMed  Google Scholar 

  • Burnstock G (1981) Development of smooth muscle and its innervation. In: Bülbring E, Brading AF, Jone AW, Tornita T (eds) Smooth muscle: an assessment of current knowledge. Arnold, London, pp 431–457

    Google Scholar 

  • Campbell GR, Chamley JH, Burnstock G (1974) Development of smooth muscle cells in tissue culture. J Anat (Lond) 117: 295–312

    CAS  Google Scholar 

  • Carey DJ (1991) Control of growth and differentiation of vascular cells by extracellular matrix proteins. Annu Rev Physiol 53: 61–177

    Google Scholar 

  • Chamley-Campbell J, Campbell G, Ross R (1979) The smooth muscle cell in culture. Physiol Rev 59: 1–61

    PubMed  CAS  Google Scholar 

  • Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol 191: 381–396

    PubMed  CAS  Google Scholar 

  • Cobb JLS, Bennett T (1970) An ultrastructural study of mitotic division in differentiated gastric smooth muscle cells. Z Zellforsch Mikrosk Anat 108: 177–189

    PubMed  CAS  Google Scholar 

  • Collett AJ, Des Beins GD (1974) Fine structure of myogenesis and elastogenesis in the developing rat lung. Anat Rec 179: 343–360

    Google Scholar 

  • Coplan DE, Macarak EJ, Levin RM (1994) Developmental changes in normal fetal bovine whole bladder physiology. J Urol 151: 1391–1395

    Google Scholar 

  • Cunha GR, Young P, Brody JR (1989) Role of uterine epithelium in the development of myome-trial smooth muscle cells. Biol Reprod 40: 861–871

    PubMed  CAS  Google Scholar 

  • Davis EC (1993) Stability of elastin in the developing mouse aorta: a quantitative radioautographic study. Histochemistry 100: 17–26

    PubMed  CAS  Google Scholar 

  • Deugnier M-A, Moiseyeva EP, Thiery JP, Glukhova M (1995) Myoepithelial cell differentiation in the developing mammary gland: progressive acquisition of smooth muscle phenotype. Dev Dyn 204: 107–117

    PubMed  CAS  Google Scholar 

  • Donahoe JR, Bowen JM (1972) Analysis of the spontaneous motility of the avian embryonic gizzard. Am J Vet Res 33: 1835–1848

    PubMed  CAS  Google Scholar 

  • Duband J-L, Gimona M, Scatena M, Sartore S, Small JV (1993) Calponin and SM 22 as differentiation markers of smooth muscle: spatiotemporal distribution during avian embryonic development. Differentiation 55: 1–11

    PubMed  CAS  Google Scholar 

  • Eddinger TJ, Meer DP (1997) Myosin isoform heterogeneity in single smooth muscle cells. Comp Biochem Physiol 117B: 29–38

    CAS  Google Scholar 

  • Eddinger TJ, Murphy RA (1991) Developmental changes in actin and myosin heavy chain isoform expression in smooth muscle. Arch Biochem Biophys 284: 232–237

    PubMed  CAS  Google Scholar 

  • Evans DH, Evans EM (1964) The membrane relationships of smooth muscles: an electron microscope study. J Anat (Lond) 98: 37–46

    CAS  Google Scholar 

  • Fatigati V, Murphy RA (1984) Actin and tropomyosin variants in smooth muscles. J Biol Chem 259: 14384–14388

    Google Scholar 

  • Ferrari PA, Koch WE (1984) Development of the iris in the chicken embryo. I. A study of growth and histodifferentiation utilizing immunocytochemistry for muscle differentiation. J Embryol Exp Morphol 81: 153–167

    PubMed  CAS  Google Scholar 

  • Fujii S, Konishi I, Mori T (1989) Smooth muscle differentiation at endometrio-myometrial junction. Virchows Archiv A Pathol Anat 414: 105–112

    CAS  Google Scholar 

  • Gabella G (1989) Development of smooth muscle: ultrastructural study of the chick embryo gizzard. Anat Embryol 180: 213–226

    PubMed  CAS  Google Scholar 

  • Gabella G (1990) Hypertrophy of visceral smooth muscle. Anat Embryol 182: 409–424

    PubMed  CAS  Google Scholar 

  • Gabella G (1991) Ultrastructure of tracheal muscle in developing, adult and ageing guinea-pigs. Anat Embryol 183: 71–79

    PubMed  CAS  Google Scholar 

  • Gabella G (1992) Intestinal smooth muscle development. In: Holle GE (ed) Advances in the innervation of the gastrointestinal tract. Elsevier, Amsterdam, pp 35–47

    Google Scholar 

  • Gabella G, Clarke E (1983) Embryonic development of the smooth and striated musculatures of the chicken iris. Cell Tissue Res 229: 37–59

    PubMed  CAS  Google Scholar 

  • Gabella G, Uvelius B (1990) Urinary bladder fine structure: normal and hypertrophic musculature. Cell Tissue Res 262: 67–79

    PubMed  CAS  Google Scholar 

  • Geiger B, Dutton AH, Tokuyasu KT, Singer SJ (1981) Immunoelectron microscope studies of membrane-microfilament interaction. The distribution of a-actinin, tropomyosin and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol 91: 614–628

    PubMed  CAS  Google Scholar 

  • Gershon MD, Sherman P, Gintzler AR (1981) An ultrastructural analysis of the developing enteric nervous system of the guinea-pig small intestine. J Neurocytol 10: 271–296

    PubMed  CAS  Google Scholar 

  • Glukhova MA, Frid MG, Shekhonin BV, Balabanov YV, Koteliansky VE (1990) Expression of fibronectin variants in vascular and visceral smooth muscle cells in development. Dev Biol 141: 193–202

    PubMed  CAS  Google Scholar 

  • Glukhova M, Koteliansky V, Fondacci C, Marotte F, Rappaport L (1993) Laminin variants and integrin laminin receptors in developing and adult human smooth muscle. Dev Biol 157: 437–447

    PubMed  CAS  Google Scholar 

  • Gröschel-Stewart U, Jaroschik U, Schwalm H (1971) Chicken gizzard, a myosin-containing smooth muscle. Experientia 27: 512

    PubMed  Google Scholar 

  • Hegele-Hartung C, Chwalisz K, Beier HM (1992) Distribution of estrogen and progesterone receptors in the uterus: an immunohistochemical study in the immature and adult pseudopregnant rabbit. Histochemistry 97: 97–50

    Google Scholar 

  • Hirai S, Hirabayashi T (1983) Developmental changes of protein constituents in chicken gizzards. Dev Biol 97: 483–493

    PubMed  CAS  Google Scholar 

  • Hirai S, Hirabayashi T (1986) Development of myofibrils in the gizzard of chicken embryos. Intracellular distribution of structural proteins and development of contractility. Cell Tissue Res 243: 487–493

    CAS  Google Scholar 

  • Holstein AF, Maekawa M, Nagano T, Davidoff MS (1996) Myofibroblasts in the lamina propria of human seminiferous tubules are dynamic structures of heterogeneous phenotype. Arch Histol Cytol 59: 109–125

    PubMed  CAS  Google Scholar 

  • Hood LS, Rosenquist TH (1992) Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec 234: 291–300

    PubMed  CAS  Google Scholar 

  • Hungerford JE, Hoeffier JP, Bowers CW, Dahm LM, Falchetto R, Shabanowitz J, Hunt DF, Little CD (1997) Identification of a novel marker for primordial smooth muscle and its differential expression pattern in contractile vs noncontractile cells. J Cell Biol 137: 925–937

    PubMed  CAS  Google Scholar 

  • Johnson AJ, Kinsey DL, Rehm RA (1962) Observations on bladder regeneration. J Urol 88: 494–499

    Google Scholar 

  • Kelley CA, Takahashi M, Yu JH, Adelstein RS (1993) An insert of seven amino acids confers functional differences between smooth muscle myosins from the intestine and vasculature. J Biol Chem 268: 12848–12854

    PubMed  CAS  Google Scholar 

  • Ko J-A, Murahashi S, Arata T, Inoue A (1996) Differentiation of smooth muscle cells from undifferentiated cells of chicken gizzard occurs on the layer of fibroblast-like cells. Cell Tissue Res 285: 395–401

    PubMed  CAS  Google Scholar 

  • Konishi I, Fujii S, Okamura H, Mori T (1984) Development of smooth muscle in the human fetal uterus: an ultrastructural study. J Anat 139: 239–252

    PubMed  Google Scholar 

  • Kuroda M (1985) Change of actin isomers during differentiation of smooth muscle. Biochem Biophys Acta 843: 208–213

    PubMed  CAS  Google Scholar 

  • La Mantia J, Shafiq SA (1982) Developmental changes in the plasma membrane of gizzard smooth muscle of the chicken. A freeze-fracture study. J Anat 134: 243–253

    Google Scholar 

  • Lai Y-L (1972) The development of the sphincter muscle in the iris of the albino rat. Exp Eye Res 14: 196–202

    PubMed  CAS  Google Scholar 

  • Le Douarin N, Kalcheim C (1999) The neural crest. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Lièvre CS, Le Douarin NM (1975) Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J Embryol Exp Morphol 34: 125–154

    PubMed  Google Scholar 

  • Lecoin L, Gabella G, Le Douarin N (1996) Origin of the c-kit-positive interstitial cells in the avian bowel. Development 122: 725–733

    PubMed  CAS  Google Scholar 

  • Lees-Miller JP, Heeley DH, Smillie LB (1987) An abundant and novel protein of 22kDa (SM22) is widely distributed in smooth muscles: purification from bovine aorta. Biochem J 244: 705–709

    PubMed  CAS  Google Scholar 

  • Leeson TS, Leeson CR (1965) The rat ureter. Fine structural changes during its development. Acta Anat 62: 60–70

    Google Scholar 

  • Li L, Miano JM, Cserjesi P, Olson EN (1996) SM22a, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circ Res 78: 188–195

    PubMed  CAS  Google Scholar 

  • Liddell RA, Syms M, McHugh KM (1993) Heterogeneous isoactin gene expression in the adult rat gastrointestinal tract. Gastroenterology 105: 347–356

    PubMed  CAS  Google Scholar 

  • Link BA, Nishi R (1998) Development of the avian iris and ciliary body: mechanisms of cellular differentiation during the smooth-to-striated muscle transition. Dev Biol 203: 163–176

    PubMed  CAS  Google Scholar 

  • Liu H-C (1962) The comparative structure of the ureter. Am J Anat 111: 1–15

    PubMed  CAS  Google Scholar 

  • Lucchi ML, Bortolami R, Callegari E (1974) Fine structure of intrinsic eye muscles of birds: developmental and postnatal changes. J Submicrosc Cytol 6: 205–218

    Google Scholar 

  • Masumoto K, Nada O, Suita S, Taguchi T, Guo R (2000) The formation of the chick ileal muscle layers as revealed by a-smooth muscle actin immunohistochemistry. Anat Embryol 201: 121–129

    PubMed  CAS  Google Scholar 

  • Matsuno T, Tokunaka S, Koyanagi T (1984) Muscular development in the urinary tract. J Urol 132: 148–152

    PubMed  CAS  Google Scholar 

  • McHugh KM (1995) Molecular analysis of smooth muscle development in the mouse. Dev Dyn 204: 278–290

    PubMed  CAS  Google Scholar 

  • McHugh KM (1996) Molecular analysis of gastrointestinal muscle development. J Pediatr Gastroenterol Nutr 23: 379–394

    PubMed  CAS  Google Scholar 

  • McHugh KM, Crawford K, Lessard JL (1991) A comprehensive analysis of the developmental and tissue-specific expression of the isoactin multigene family in the rat. Dev Biol 148: 442–458

    PubMed  CAS  Google Scholar 

  • Miano JM, Olson EN (1996) Expression of the smooth muscle cell calponin gene marks the early cardiac and smooth muscle cell lineages during mouse embryogenesis. J Biol Chem 271: 7095–7103

    PubMed  CAS  Google Scholar 

  • Miano JM, Cserjesi P, Ligon KL, Periasamy M, Olson EN (1994) Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during muscle embryogenesis. Circ Res 75: 803–812

    PubMed  CAS  Google Scholar 

  • Moss F, Leblond C (1970) Nature of dividing nuclei in skeletal muscle of growing rats. J Cell Biol 44: 459–462

    PubMed  CAS  Google Scholar 

  • Mussini I, Aloisi M, Lucke RS (1976) Transient smooth muscle features in developing chick striated muscle. J Submicrosc Cytol 8: 256

    Google Scholar 

  • Neu J (1989) Functional development of the fetal gastrointestinal tract. Semin Perinatol 13: 224–235

    PubMed  CAS  Google Scholar 

  • Newman J, Antonakopoulos GN (1989) The fine structure of the human fetal urinary bladder. Development and maturation. A light, transmission and scanning electron microscope study. J Anat 166: 135–150

    Google Scholar 

  • Olivetti G, Anversa P, Melissari M, Loud AV (1980) Morphometric study of early postnatal development of the thoracic aorta in the rat. Circ Res 47: 417–424

    PubMed  CAS  Google Scholar 

  • Owen GK (1995) Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75: 487–517

    Google Scholar 

  • Pasqualini JR, Sumida C, Gulino A, Tardy J, Nguyen BL, Gelly C, Cosquer-Clavreul C (1983) Progesterone receptors during fetal development. In: Bardin CW, Milgröm E, Mauvais-Jarkis P (eds) Progesterone and progestrins. Raven Press, New York

    Google Scholar 

  • Patapoutian A, Wold BJ, Wagner RA (1995) Evidence for developmentally programmed transdifferentiation in mouse esophageal muscle. Science 270: 1818–1821

    PubMed  CAS  Google Scholar 

  • Paul ER, Christian A-L, Franke R, Gröschel-Stewart U (1994) Embryonic chicken gizzard: smooth muscle and non-muscle myosin isoforms. Cell Tissue Res 276: 381–386

    PubMed  CAS  Google Scholar 

  • Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8: 1083–1086

    PubMed  CAS  Google Scholar 

  • Pilar G, Tuttle J, Vaca K (1981) Functional maturation of motor nerve terminals in the avian iris: ultrastructure, transmitter metabolism and synaptic reliability. J Physiol (Lond) 321: 175–193

    CAS  Google Scholar 

  • Pilar G, Nunez R, McLennan ISS, Meriney SD (1987) Muscarinic and nicotinic synaptic activation of the developing chicken iris. J Neurosci 7: 3813–3826

    PubMed  CAS  Google Scholar 

  • Ramalho-Santos M, Melton DA, Macmahon AP (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127: 2763–2772

    PubMed  CAS  Google Scholar 

  • Reger JF (1966) The fine structure of iridial constrictor pupillae muscle of Alligator mississipiensis. Anat Rec 155: 197–216

    PubMed  CAS  Google Scholar 

  • Ross R, Klebanoff SJ (1967) The structural changes in uterine smooth muscle and fibroblasts in response to estrogens. J Cell Biol 32: 155–169

    PubMed  CAS  Google Scholar 

  • Rubenstein PA (1981) Differential behavior of gizzard isoactins. Arch Biochem Biophys 43: 151–161

    Google Scholar 

  • Ruzicka D, Schwartz R (1988) Sequential activation of a-actin genes during avian cardiogenesis: vascular smooth muscle a-actin gene transcripts mark the onset of cardiomyocyte differentiation. J Cell Biol 107: 2575–2586

    PubMed  CAS  Google Scholar 

  • Saborío JL, Segura M, Flores M, Garcia R, Palmer E (1979) Differential expression of gizzard actin genes during chick embryogenesis. J Biol Chem 254: 1119–1125

    Google Scholar 

  • Saint-Jeannet J-P, Levi G, Girault J-M, Koteliansky V, Thiery J-P (1992) Ventrolateral regionalization of Xenopus laevis mesoderm is characterized by the expression of a-smooth muscle actin. Development 115: 1165–1173

    PubMed  CAS  Google Scholar 

  • Sawtell N, Lessard J (1989) Cellular distribution of smooth muscle actins during mammalian embryogenesis: expression of the a-vascular but not the y-enteric isoform in differentiating striated myocytes. J Cell Biol 109: 2929–2937

    PubMed  CAS  Google Scholar 

  • Scapolo PA, Peirone SM, Filogamo G, Veggetti A (1988) Histochemical, immunohistochemical, and ultrastructural observation on the iris muscles of Gallus gallus. Anat Rec 221: 687–699

    PubMed  CAS  Google Scholar 

  • Skalli O, Ropez P, Trzeciak A, Benzonana G, Gillessen D, Gabbiani G (1986) A monoclonal antibody against a-smooth muscle actin: a new probe for smooth muscle differentiation. J Cell Biol 103: 2787–2796

    PubMed  CAS  Google Scholar 

  • Stratton CJ, Bayguinov Y, Sanders KM (2000) Ultrastructural analysis of the transdifferentation of smooth muscle to skeletal muscle in the murine esophagus. Cell Tissue Res 301: 283–298

    PubMed  CAS  Google Scholar 

  • Stuewer D, Gröschel-Stewart U (1985) Expression of immunoreactive myosin and myoglobin in the developing chicken gizzard. Roux’s Arch Dev Biol 194: 417–424

    CAS  Google Scholar 

  • Takahashi Y, Imanaka T, Takano T (1996) Spatial and temporal pattern of smooth muscle cell differentiation during development of the vascular system in the mouse embryo. Anat Embryol 194: 515–526

    PubMed  CAS  Google Scholar 

  • Taura M (1978) Origin and fate of paired cisternae in mitotic aortic cells of swine. J Electron Micr 27: 283–291

    CAS  Google Scholar 

  • Tennyson V, Duc Pham T, Rothman T, Gershon M (1986) Abnormalities of smooth muscle, basal laminae, and nerves in the aganglionic segments of the bowel of lethal spotted mutant mice. Anat Rec 215: 267–281

    PubMed  CAS  Google Scholar 

  • Tonosaki A, Kelly DE (1971) Fine structural study on the origin and development of the sphincter pupillae muscle in the West Coast newt (Taricha torosa). Anat Rec 170:57–74

    CAS  Google Scholar 

  • Volberg T, Sabanay H, Geiger B (1986) Spatial and temporal relationships between vincul in and

    Google Scholar 

  • talin in developing chicken gizzard muscle. Differentiation 32:34–43

    Google Scholar 

  • Volpe P, Biral D, Pizzo P, Salviati G, Margreth A (1993) Ontogenesis of chick iris intrinsic muscle: evidence for a smooth-to-striated transition. Dev Biol 159: 441–449

    PubMed  CAS  Google Scholar 

  • Ward SM, Torihashi S (1995) Morphological changes during ontogeny of the canine proximal colon. Cell Tissue Res 282: 93–108

    PubMed  CAS  Google Scholar 

  • Woodcock-Mitchell J, Mitchell J, Low R, Kieny M, Sengel P, Rubbia L, Skalli O, Jackson B, Gabbiani G (1988) a-Smooth muscle actin is transiently expressed in embryonic rat cardiac and skeletal muscles. Differentiation 39: 161–166

    Google Scholar 

  • Wu H-S, Baskin LS, Blakey C, Goodman J, Cunha GR (1999) Ultrastructural smooth muscle ontogeny of the rat bladder. In: Baskin LS, Cunha GR (eds) Advances in bladder research. Kluwer and Plenum, New York, pp 93–102

    Google Scholar 

  • Yamamoto Y, Kubota T, Atoji Y, Suzuki Y (1996) Distribution of a-vascular smooth muscle actin in the smooth muscle cells of the gastrointestinal tract of the chicken. J Anat (Lond) 189: 623–630

    CAS  Google Scholar 

  • Yamashita T, Sohal GS (1986) Development of smooth and skeletal muscle cells in the iris of the domestic duck, chick and quail. Cell Tissue Res 244: 121–131

    PubMed  CAS  Google Scholar 

  • Yamauchi A, Burnstock G (1969) Post-natal development of smooth muscle cells in the mouse vas deferens. J Anat (Lond) 104: 1–15

    CAS  Google Scholar 

  • Zak R (1973) Cell proliferation during cardiac growth. Am J Cardiol 3: 211–219

    Google Scholar 

  • Zimmermann A, Haine A, Gröschel-Stewart U (1995) Neural and smooth muscle development in the chicken gizzard. Roux’s Arch Dev Biol 204: 271–274

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gabella, G. (2002). Development of Visceral Smooth Muscle. In: Brand-Saberi, B. (eds) Vertebrate Myogenesis. Results and Problems in Cell Differentiation, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45686-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45686-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07735-7

  • Online ISBN: 978-3-540-45686-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics