Skip to main content

Technical, partner reports containing method descriptions and concise presentation of important results

  • Conference paper
Progress in Computational Flow-Structure Interaction

Abstract

In the following 15 chapters, partners provide an overview about methods used and highlight results achieved. For application oriented results, the reader is referred to Chapter IV, while basic approaches and general information concerning the different tasks in UNSI are provided in Chapter III.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Jameson, A., (1983): The Evolution of Computational Methods in Aerodynamics. Journal of Applied echanics (Vol 50–1983)

    Google Scholar 

  • Pulliam, T.H., (1993): Time Accuracy and use of Implicit Methods. AIAA 93–3360-CP

    Google Scholar 

  • Smith, M.J., Hodges, D.H., Cesnik, C.E.S., (1995): An Evaluation of Computational Algorithms to Interface Between CFD and CSD Methodologies. NASA Technical Report WL-TR-96–3055

    Google Scholar 

  • Jacquotte, O.-P., Cabello, J., (1988): A Variational Method for the Optimization and Adaptation of grids in Computational Fluid Dynamics. Proceedings of the Second Conference on Grid Generation in CFD. Pineridge Press, 1988. pp 405–414

    Google Scholar 

  • M.E. Algorri and F. Schmitt (1994): Contrôle de la Dynamique des Maillages Adaptatifs. ENST-94-D- 017

    Google Scholar 

  • J.T. Batina (1989): Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes. AIAA Paper No 89–0115, 27th Aerospace Sciences Meeting. Reno, Nevada

    Google Scholar 

  • C. Farhat, C. Degand, B. Koobus and M. Lesoinne (1997): Torsional springs for two-dimensional dynamic unstructured fluid meshes. Report CU-CAS-97–03, The University of Colorado at Boulder.

    Google Scholar 

  • R. Lohner, C. Yang and J. D. Baum (1996): Rigid and flexible store separation simulations using dynamic adaptative unstructured grid technologies. In: Proceedings of the First AFOSR Conference on Dynamic Motion CFD, ed. by L. Sakell and D. Knight. Rutgers University - The State University of New Jersey, New Jersey.

    Google Scholar 

  • Guru P. Guruswamy (1988): Time Accurate Unsteady Aerodynamic and Aeroelactic Calculations of Wings Using Euler Equations. AIAA Paper No 88–2281, 29th Structures, Structural Dynamics and Materials Conference. Williamsburg , Virginia

    Google Scholar 

  • Claude Y Lepage and Wadgi G. Habashi (1999): Fluid-Structure Interactions Using the ALE Formulation. AIAA Paper No 99–0660, 37th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada

    Google Scholar 

  • Berggren, M., Geometric conservation for structured moving meshes, Technical Report FFA TN 1998–28, 1998.

    Google Scholar 

  • Berggren, M., The volume discharge approach to geometric conservation. In T. Kvamsdal et al., editor, Computational Methods for Fluid-Structure Interaction. Tapir Publishers, N-7005 Trondheim, Norway, 1999.

    Google Scholar 

  • Bisplinghoff, R. L., and Ashley, H.. Principles of Aeroelasticity. Dover, New York, 1975.

    Google Scholar 

  • Eliasson, R, and Nordström, J., The Development of an Unsteady Solver for Moving Meshes, Technical Report FFA TN 1995–39, 1995.

    Google Scholar 

  • Fan, S., and Lakshminarayana, B., Low-Reynolds-Number k — e Model for Unsteady Turbulent Boundary-Layer Flows, AIAA Journal, 31:10, 1993, pp. 1777–1784.

    Article  MATH  Google Scholar 

  • Guillot, D., and Friedmann, P.P., Adaptive control of aeroelastic instabilities in transonic flow using CFD based loads. International forum on Aeroelasticity and Structural Dynamics, paper 73, 1995.

    Google Scholar 

  • Jameson, A., Time Dependent Calculations using Multigrid, with Applications to Unsteady Flows past Airfoils and Wings, AIAA-91–1596, 1991.

    Google Scholar 

  • Jin, G., and Braza, M., Two-Equation Türbulence Model for Unsteady Separated Flows around Airfoils, AIAA Journal, 32, 1994, pp. 2316–2320.

    Article  Google Scholar 

  • Lacor, C., Zhu, Z.W., and Hirsch, C., A New Family of Limiters Within the Multigrid/Multiblock Navier- Stokes code Euranus, AIAA/DGLR 5th Int. Aerospace Planes and Hypersonics Conf., Munich. 1993.

    Google Scholar 

  • Mankbadi, R. R., and Mobark, A., Quasi-steady Turbulence Modeling of Unsteady Flows, Int. J. Heat and Fluid Flow, 12, 1991, pp. 122–129.

    Article  Google Scholar 

  • Menter, F. R., Zonal Two-Equation k — uj models for Aerodynamic Flow, AIAA-93–2906, 1993.

    Google Scholar 

  • Rizzi, A., Eliasson, P., Lindblad, I., Hirsch, C., Lacor, C., and Häuser, S., The Engineering of Multi-block/Multigrid Software for Navier-Stokes Flows on Structured Meshes, Computers & Fluids, 22, 1993,pp. 341–367.

    Google Scholar 

  • Wallin, S., and Johansson A. V., An explicit algebraic Reynolds stress model of incompressible and compressible flows, J. Fluid Mech., 403, 2000, pp.341–367.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Selmin, V. et al. (2003). Technical, partner reports containing method descriptions and concise presentation of important results. In: Haase, W., Selmin, V., Winzell, B. (eds) Progress in Computational Flow-Structure Interaction. Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol 81. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45489-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45489-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07868-2

  • Online ISBN: 978-3-540-45489-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics