Skip to main content

Part of the book series: Lecture Notes in Applied Mechanics ((LNACM,volume 6))

Abstract

The representation of ballast in conventional track models is unsatisfactory, since still important physical phenomena inside the ballast layer are not understood. Therefore, in this paper an alternative theoretical approach, the Molecular Dynamics method (MD method) as a powerful tool for the investigation of granular material, is investigated. In contrast to a continuum description, in the corresponding 2D-model each single stone of the ballast can be taken into account. In the frame of a numerical time-step integration, the contact forces are calculated from the overlap area of the particle geometries.

The paper includes information about the sensitivity of the model behaviour on initial conditions and contact law parameters. Furthermore, the contact network, the quasi-static stiffness of the ballast layer and its long-term behaviour are addressed. Particular emphasis is put on the description of current difficulties and challenges in applying the MD method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bode, C., Hirschauer, R., Savidis, S. A. (2000) Three-dimensional time domain analysis of moving loads on railway tracks on layered soils. In: Chouw & Schmid (Editors): Wave 2000, Balkema, Rotterdam, 3–12

    Google Scholar 

  2. Cundall, P. A., Strack, O. D. L. (1979) A discrete numerical model for granular assemblies. Geotechnique 29, 47–65

    Article  Google Scholar 

  3. Guldenfels, R. (1996) Die Alterung von Bahnschotter aus bodenmechanischer Sicht. Veröffentlichung des Instituts für Geotechnik der ETH Zürich 206, vdf Hochschulverlag Zürich

    Google Scholar 

  4. Knothe, K., Wu, Y. (1998) Receptance behaviour of railway track and subgrade. Archive of Applied Mechanics 68, 457–470

    Article  MATH  Google Scholar 

  5. Kruse, H., Popp, K., Krzyzynski, T. (1998) On steady state dynamics of railway tracks modelled as continuous periodic structures. Machine Dynamics Problems 20, 149–166

    Google Scholar 

  6. Kruse, H., Popp, K. (2000) The influence of wave propagation in the subsoil on the train-track dynamics. In: Chouw & Schmid (Editors): Wave 2000, Balkema, Rotterdam, 171–184

    Google Scholar 

  7. Kruse, H., Popp, K. (2001) A modular algorithm for linear, periodic train-track models. Archive of Applied Mechanics 71, 473–486

    Article  MATH  Google Scholar 

  8. Kruse, H. (2002) Modellgestützte Untersuchung der Gleisdynamik und des Verhaltens von Eisenbahnschotter. Universität Hannover, Dissertation

    Google Scholar 

  9. Leykauf, G., Mattner, L. (1998) Moderne Fahrweg-Systeme. Eisenbahntechnische Rundschau 47, 133–138

    Google Scholar 

  10. Matuttis, H.-G. (1998) Simulations of the pressure distribution under a two dimensional heap of polygonal particles. Granular Matter 1(2), 83–91

    Article  Google Scholar 

  11. Estrade I., Panades, J.-M. (1989) Contribucion al Conocimiento del Macanismo de Deterioro de la Geometria de la Via por el Analisis del Comportamiento en Rotura de los Materiales que Forman la Capa de Balasto. Dissertation, Barcelona

    Google Scholar 

  12. Popp, K., Bogacz, R. (1984) Dynamik und Bewegungsstabilität von Zug-GleisSystemen. VDI-Berichte 510. VDI Düsseldorf, 197–204

    Google Scholar 

  13. Schinner, A., Matuttis, H.-G. (1998) Internet: http://octopus.th.physik.unifrankfurt.de/~schinner/granular/movies.shtml

  14. Schünemann, A., Augustin, S., Huber, G., Gudehus, G. (2000) Sackungen des Schottergleises durch Zugüberfahrten. Schriftenreihe des Instituts für Grundbau und Bodenmechanik 32, Uni-Bochum, 223–239

    Google Scholar 

  15. Selig, E. T. (1998) Ballast deformation: its causes and cures. Railway Track & Structures, May 1998, 25–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kruse, H., Popp, K. (2003). Model-Based Investigation of the Dynamic Behaviour of Railway Ballast. In: Popp, K., Schiehlen, W. (eds) System Dynamics and Long-Term Behaviour of Railway Vehicles, Track and Subgrade. Lecture Notes in Applied Mechanics, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45476-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45476-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07864-4

  • Online ISBN: 978-3-540-45476-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics