Skip to main content

Cortical Bone Mineral Status Evaluated by pQCT, Quantitative Backscattered Electron Imaging and Polarized Light Microscopy

  • Chapter
  • 2499 Accesses

Abstract

Synergy can be achieved using multiple imaging modalities to reveal cortical bone adaptation at organ, tissue and ultrastructural levels. Peripheral quantitative computed tomography (pQCT) measurement showed significant regional variations of cortical bone mineral density (cBMD) in the distal tibia and distal radius, independent of menopausal status. The higher cBMD was related to its prevalent compressive stress. Circularly polarized light (CPL) microscopy supported this by showing a preferred transverse to oblique collagen fibre orientation. Quantitative backscattered electron (QBSE) imaging study of osteon morphometry and degree of mineralisation in the cadaveric tibia and radius showed that the variation of cBMD was due to differences in percentage of intracortical porosity (IP), rather than to the variation of mineralisation. The distal tibia had significantly lower cBMD than the distal radius. This lower cBMD was compensated by having greater cortical thickness, polar moment of inertia, and collagen fibre orientation index. The tibia, being subject to habitual dynamic compressive loading as compared with the non-weight-bearing nature of the radius, may activate a higher remodelling rate, which does not allow full secondary mineralisation. This was evidenced in the study showed lower cBMD and greater percentage of IP; thus, the compensatory increase in bone geometry is meant to withstand the sustained bend and torsion loading in this region. This chapter demonstrates that compressive loading is more osteogenic bringing about greater regional BMD. The design of exercise intervention programs to enhance bone quality should consider the strain mode effect. Compensation between the material density and structure is evidenced which allows bone strengthening. Regional bone adaptation, as revealed by multiple imaging modalities, allows better understanding of changes at different levels of bone organization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkus O, Polyakova-Akkus A, Adar F, Schaffler M B (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18(6):1012–1019

    Article  PubMed  CAS  Google Scholar 

  • An KN, Hui FC, Morrey B F, Linscheid R L, Chao E Y (1981) Muscles across the elbow joint: a biomechanical analysis. J Biomech 14(10):659–669

    Article  PubMed  CAS  Google Scholar 

  • An Y H, Barfield W R, Knets I (2000) Methods of evaluation for bone dimensions, densitites, contents, morphology, and structures. Mechanical testing of bone and the bone-implant interface. Y. H. An and R. A. Draughn, eds. CRC Press, Boca Raton, pp 103–118

    Google Scholar 

  • Bachus KN, Bloebaum RD (1992) Projection effect errors in biomaterials and bone research. Cells Mater 2(4):347–355

    Google Scholar 

  • Barth RW, Williams JL, Kaplan FS (1992) Osteon morphometry in females with femoral neck fractures. Clin Orthop 283:178–186

    PubMed  Google Scholar 

  • Bertram J E, Biewener A A (1988) Bone curvature: sacrificing strength for load predictability? J Theor Biol 131(1):75–92

    PubMed  CAS  Google Scholar 

  • Birkbeck D P, Failla J M, Hoshaw S J, Fyhrie D P, Schaffler M (1997) The interosseous membrane affects load distribution in the forearm. J Hand Surg [Am] 22(6):975–980

    Article  CAS  Google Scholar 

  • Bloebaum R D, Bachus K N, Boyce T M (1990) Backscattered electron imaging: the role in calcified tissue and implant analysis. J Biomater Appl 5(1):56–85

    PubMed  CAS  Google Scholar 

  • Bloebaum R D, Skedros J G, Vaj da E G, Bachus K N, Constantz B R (1997) Determining mineral content variations in bone using backscattered electron imaging. Bone 20(5):485–490.

    Article  PubMed  CAS  Google Scholar 

  • Boivin G Y, Chavassieux P M, Santora A C, Yates J, Meunier P J (2000) Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27(5):687–694.

    Article  PubMed  CAS  Google Scholar 

  • Borah B, Ritman E L, Dufresne T E, Jorgensen S M, Liu S, Sacha J, Phipps R J and Turner R T (2005) The effect of risedronate on bone mineralization as measured by micro-computed tomography with synchrotron radiation: correlation to histomorphometric indices of turnover. Bone 37(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Borah B, Dufresne T E, Ritman E L, Jorgensen S M, Liu S, Chmielewski P A, Phipps R J, Zhou X, Sibonga J D, Turner R T (2006) Long-term risedronate treatment normalizes mineralization and continues to preserve trabecular architecture: sequential triple biopsy studies with micro-computed tomography. Bone 39(2):342–345

    Article  CAS  Google Scholar 

  • Boyde A, Riggs C M (1990) The quantitative study of the orientation of collagen in compact bone slices. Bone 11(1):35–39

    Article  PubMed  CAS  Google Scholar 

  • Bromage T G, Goldman H M, McFarlin S C, Warshaw J, Boyde A, Riggs C M (2003) Circularly polarized light standards for investigations of collagen fiber orientation in bone. Anat Rec B New Anat 274(1):157–168

    Article  PubMed  Google Scholar 

  • Burr D B, Ruff C B, Thompson D D (1990) Patterns of skeletal histologic change through time: comparison of an archaic native American population with modern populations. Anat Rec 226(3):307–313

    Article  PubMed  CAS  Google Scholar 

  • Burr D B, Forwood M R, Fyhrie D P, Martin R B, Schaffler M B, Turner C H (1997) Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 12(1):6–15

    Article  PubMed  CAS  Google Scholar 

  • Burr D B, Turner C H, Naick P, Forwood M R, Ambrosius W, Hasan M S, Pidaparti R (1998) Does microdamage accumulation affect the mechanical properties of bone? J Biomech 31(4):337–345

    Article  PubMed  CAS  Google Scholar 

  • Camacho N P, Carroll P, Raggio C L (2003) Fourier transform infrared imaging spectroscopy (FT-IRIS) of mineralization in bisphosphonate-treated oim/oim mice. Calcif Tissue Int 72(5):604–609

    Article  PubMed  CAS  Google Scholar 

  • Carando S, Portigliatti Barbos M, Ascenzi A, Boyde A (1989) Orientation of collagen in human tibial and fibular shaft and possible correlation with mechanical properties. Bone 10(2):139–142

    Article  PubMed  CAS  Google Scholar 

  • Carando S, Portigliatti-Barbos M, Ascenzi A, Riggs C M, Boyde A (1991) Macroscopic shape of, and lamellar distribution within, the upper limb shafts, allowing inferences about mechanical properties. Bone 12(4):265–269

    Article  PubMed  CAS  Google Scholar 

  • Chadwick E K, Nicol A C (2000) Elbow and wrist joint contact forces during occupational pick and place activities. J Biomech 33(5):591–600

    Article  PubMed  CAS  Google Scholar 

  • Chilibeck P D, Sale D G, Webber C E (1995) Exercise and bone mineral density. Sports Med 19(2):103–122

    PubMed  CAS  Google Scholar 

  • Currey J D (1984) Effects of differences in mineralization on the mechanical properties of bone. Philos Trans R Soc Lond B Biol Sci 304(1121):509–518

    Article  PubMed  CAS  Google Scholar 

  • Dufresne T E, Chmielewski P A, Borah B (2003) A novel method for the measurement of degree of mineralization using bench-top microCT. J Bone Miner Res 18(Suppl 2): s319

    Google Scholar 

  • Faibish D, Gomes A, Boivin G, Binderman I, Boskey A (2005) Infrared imaging of calcified tissue in bone biopsies from adults with osteomalacia. Bone 36(1):6–12

    Article  PubMed  CAS  Google Scholar 

  • Felsenberg D, Boonen S (2005) The bone quality framework: determinants of bone strength and their interrelationships, and implications for osteoporosis management. Clin Ther 27(1):1–11

    Article  PubMed  Google Scholar 

  • Follet H, Boivin G, Rumelhart C, Meunier P J (2004) The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34(5):783–789

    Article  PubMed  CAS  Google Scholar 

  • Frost H M (1983) A determinant of bone architecture. The minimum effective strain. Clin Orthop(175):286–292

    PubMed  Google Scholar 

  • Frost H M (1987) Bone “Mass” and the “Mechanostat”: a proposal. Anat Rec 219(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Frost H M (1990) Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec 226(4):403–413

    Article  PubMed  CAS  Google Scholar 

  • Gray H (1974) Gray’s anatomy. Running Press, Philadelphia, pp 134–215

    Google Scholar 

  • Hayes W C, Bouxsein M L (1997) Biomechanics of cortical and trabecular bone: implications for assessment of fracture risk. Basic orthopaedic biomechanics. V. C. Mow and W. C. Hayes, eds. Lippincott-Raven, New York, pp 69–111

    Google Scholar 

  • Huang T H, Lin S C, Chang F L, Hsieh S S, Liu S H, Yang R S (2003) Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone. J Appl Physiol 95(1):300–307

    PubMed  CAS  Google Scholar 

  • Ito M, Ejiri S, Jinnai H, Kono J, Ikeda S, Nishida A, Uesugi K, Yagi N, Tanaka M, Hayashi K (2003) Bone structure and mineralization demonstrated using synchrotron radiation computed tomography (SR-CT) in animal models: preliminary findings. J Bone Miner Metab 21(5):287–293

    Article  PubMed  Google Scholar 

  • Jee W S, Frost H M (1992) Skeletal adaptations during growth. Triangle 31(2/3):77–88

    PubMed  CAS  Google Scholar 

  • Judex S, Gross T S, Zernicke R F (1997) Strain gradients correlate with sites of exercise-induced bone-forming surfaces in the adult skeleton. J Bone Miner Res 12(10):1737–1745

    Article  PubMed  CAS  Google Scholar 

  • Karnezis IA (2005) Correlation between wrist loads and the distal radius volar tilt angle. Clin Biomech (Bristol, Avon) 20(3):270–276

    Article  Google Scholar 

  • Kaufmann R A, Kozin S H, Barnes A, Kalluri P (2002) Changes in strain distribution along the radius and ulna with loading and interosseous membrane section. J Hand Surg [Am] 27(1):93–97

    Google Scholar 

  • Lai Y M, Qin L, Hung V W Y, Chan K M (2005) Regional differences in cortical bone mineral density differences in the weight-bearing long bone shaft: a pQCT study. Bone 36:465–471

    Article  PubMed  CAS  Google Scholar 

  • Lanyon L E, Rubin C T (1984) Static vs dynamic loads as an influence on bone remodelling. J Biomech 17(12):897–905

    Article  PubMed  CAS  Google Scholar 

  • Lanyon L E, Hampson W G, Goodship A E, Shah J S (1975) Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop Scand 46(2):256–268

    Article  PubMed  CAS  Google Scholar 

  • Lanyon L E, Goodship A E, Pye C J, MacFie J H (1982) Mechanically adaptive bone remodelling. J Biomech 15(3):141–154

    Article  PubMed  CAS  Google Scholar 

  • Martin R B (2003) Fatigue microdamage as an essential element of bone mechanics and biology. Calcif Tissue Int 73(2):101–107

    Article  PubMed  CAS  Google Scholar 

  • Martin R B, Boardman D L (1993) The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech 26(9):1047–1054

    Article  PubMed  CAS  Google Scholar 

  • Martin R B, Ishida J (1989) The relative effects of collagen fiber orientation, porosity, density, and mineralization on bone strength. J Biomech 22(5):419–426

    Article  PubMed  CAS  Google Scholar 

  • Martin R B, Pickett J C, Zinaich S (1980) Studies of skeletal remodeling in aging men. Clin Orthop Relat Res(149):268–282

    Google Scholar 

  • Martin R B, Lau S T, Mathews P V, Gibson V A, Stover S M (1996) Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. J Biomech 29(12):1515–1521

    PubMed  CAS  Google Scholar 

  • Martin R B, Burr D B, Sharkey N A (1998) Skeletal tissue mechanics. Springer, Berlin Heidelberg New York, pp 127–180

    Google Scholar 

  • Mason M W, Skedros J G, Bloebaum R D (1995) Evidence of strain-mode-related cortical adaptation in the diaphysis of the horse radius. Bone 17(3):229–237

    Article  PubMed  CAS  Google Scholar 

  • Meunier P J, Boivin G (1997) Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21(5):373–377

    Article  PubMed  CAS  Google Scholar 

  • Mori S, Burr D B (1993) Increased intracortical remodeling following fatigue damage. Bone 14(2):103–109

    Article  PubMed  CAS  Google Scholar 

  • Morrey B F, Askew L J, Chao E Y (1981) A biomechanical study of normal functional elbow motion. J Bone Joint Surg Am 63(6):872–877

    PubMed  CAS  Google Scholar 

  • Muller A, Ruegsegger E, Ruegsegger P (1989) Peripheral QCT: a low-risk procedure to identify women predisposed to osteoporosis. Phys Med Biol 34(6):741–749

    Article  PubMed  CAS  Google Scholar 

  • Neumann D A (2002) Elbow and forearm complex. Kinesiology of the musculoskeletal system: foundations for physical rehabilitation. D. A. Neumann, ed. Mosby, St. Louis, pp 133–171

    Google Scholar 

  • O’Connor J A, Lanyon L E, MacFie H (1982) The influence of strain rate on adaptive bone remodelling. J Biomech 15(10):767–781

    Article  PubMed  CAS  Google Scholar 

  • Panjabi M M, White A A (2001) Biomechanics in the musculoskeletal system. Churchill Livingston, New York, p 196

    Google Scholar 

  • Paschalis E P, Glass E V, Donley D W, Eriksen E F (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: new results from the fracture prevention trial. J Clin Endocrinol Metab 90(8):4644–4649

    Article  PubMed  CAS  Google Scholar 

  • Pearson O M, Lieberman D E (2004) The aging of Wolff s “law”: ontogeny and responses to mechanical loading in cortical bone. Am J Phys Anthropol Suppl 39:63–99

    Article  Google Scholar 

  • Peterman M M, Hamel A J, Cavanagh P R, Piazza S J, Sharkey N A (2001) In vitro modeling of human tibial strains during exercise in micro-gravity. J Biomech 34(5):693–698

    Article  PubMed  CAS  Google Scholar 

  • Pfaeffle H J, Fischer K J, Manson T T, Tomaino M M, Woo S L, Herndon J H (2000) Role of the forearm interosseous ligament: Is it more than just longitudinal load transfer? J Hand Surg (Am) 25(4):683–688

    Article  CAS  Google Scholar 

  • Piziali R L, Hight T K, Nagel D A (1980) Geometric properties of human leg bones. J Biomech 13(10):881–885

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Au S K, Chan K M, Lau M C, Woo J, Dambacher M A, Leung P C (2000) Peripheral volumetric bone mineral density in pre-and postmenopausal Chinese women in Hong Kong. Calcif Tissue Int 67(1):29–36

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Hung L, Leung K, Guo X, Bumrerraj S, Katz L (2001) Staining intensity of individual osteons correlated with elastic properties and degrees of mineralization. J Bone Miner Metab 19(6):359–364

    Article  PubMed  CAS  Google Scholar 

  • Qin L, Au S, Choy W, Leung P, Neff M, Lee K, Lau M, Woo J, Chan K (2002a) Regular Tai Chi Chuan exercise may retard bone loss in postmenopausal women: a case-control study. Arch Phys Med Rehabil 83(10):1355–1359

    Article  PubMed  Google Scholar 

  • Qin L, Au S K, Leung P C, Lau M C, Woo J, Choy W Y, Hung W Y, Dambacher M A, Leung K S (2002b) Baseline BMD and bone loss at distal radius measured by pQCT in peri-and postmenopausal Hong Kong Chinese Women. Osteoporosis Int 13(12):962–970

    Article  CAS  Google Scholar 

  • Qin L, Bumrerraj S, Leung K, Katz L (2004) Correlation study of scanning acoustic microscope reflection coefficients and image brightness intensities of micrographed osteons. J Bone Miner Metab 22(2):86–89

    Article  PubMed  Google Scholar 

  • Qiu S, Rao D S, Fyhrie D P, Palnitkar S, Parfitt A M (2005) The morphological association between microcracks and osteocyte lacunae in human cortical bone. Bone 37(1):10–15

    Article  PubMed  Google Scholar 

  • Riggs C M, Lanyon L E, Boyde A (1993) Functional associations between collagen fibre orientation and locomotor strain direction in cortical bone of the equine radius. Anat Embryol (Berl) 187(3):231–238

    PubMed  CAS  Google Scholar 

  • Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23(4):319–326

    Article  PubMed  CAS  Google Scholar 

  • Roschger P, Rinnerthaler S, Yates J, Rodan G A, Fratzl P, Klaushofer K (2001) Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29(2):185–191

    Article  PubMed  CAS  Google Scholar 

  • Rubin C T, Lanyon L E (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 66(3):397–402

    PubMed  CAS  Google Scholar 

  • Rubin C T, Lanyon L E (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37(4):411–417

    Article  PubMed  CAS  Google Scholar 

  • Schaffler M B, Burr D B (1988) Stiffness of compact bone: effects of porosity and density. J Biomech 21(1):13–16

    Article  PubMed  CAS  Google Scholar 

  • Schoutens A, Laurent E, Poortmans J R (1989) Effects of inactivity and exercise on bone. Sports Med 7(2):71–81

    PubMed  CAS  Google Scholar 

  • Skedros J G (2001) Collagen fiber orientation: a characterisitcs of strain-mode-related regional adaptation in cortical bone. Bone 28: S110–S111

    Google Scholar 

  • Skedros J G, Bloebaum R D, Bachus K N, Boyce T M (1993) The meaning of graylevels in backscattered electron images of bone. J Biomed Mater Res 27(1):47–56

    Article  PubMed  CAS  Google Scholar 

  • Skedros J G, Bloebaum R D, Mason M W, Bramble D M (1994a) Analysis of a tension/compression skeletal system: possible strain-specific differences in the hierarchical organization of bone. Anat Rec 239(4):396–404

    Article  PubMed  CAS  Google Scholar 

  • Skedros J G, Mason M W, Bloebaum R D (1994b) Differences in osteonal micromorphology between tensile and compressive cortices of a bending skeletal system: indications of potential strain-specific differences in bone microstructure. Anat Rec 239(4):405–413

    Article  PubMed  CAS  Google Scholar 

  • Skedros J G, Mason M W, Nelson M C, Bloebaum R D (1996) Evidence of structural and material adaptation to specific strain features in cortical bone. Anat Rec 246(1):47–63

    Article  PubMed  CAS  Google Scholar 

  • Skedros J G, Su S C, Bloebaum R D (1997) Biomechanical implications of mineral content and microstructural variations in cortical bone of horse, elk, and sheep calcanei. Anat Rec 249(3):297–316

    Article  PubMed  CAS  Google Scholar 

  • Skedros J G, Dayton M R, Bachus K N (2001) Strain-mode specific loading of cortical bone reveals important role for collagen fiber orientation in energy absorption. Trans Orthop Res Soc 26: 519

    Google Scholar 

  • Skedros J G, Hunt K J, Dayton M R, Bloebaum R D, Bachus K N (2003a) The influence of collagen fiber orientation on mechanical properties of cortical bone of an artiodactyl calcaneus: implications for broad applications in bone adaptation. Trans Orthop Res Soc 28: 411

    Google Scholar 

  • Skedros J G, Hunt K J, Hughes P E, Winet H (2003b) Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone. Anat Rec A Discov Mol Cell Evol Biol 273(1):609–629

    Article  PubMed  Google Scholar 

  • Vajda E G, Skedros J G, Bloebaum R D (1995) Consistency in calibrated backscattered electron images of calcified tissues and minerals analyzed in multiple imaging sessions. Scanning Microsc 9(3):741–753

    PubMed  CAS  Google Scholar 

  • Vajda E G, Humphrey S, Skedros J G, Bloebaum R D (1999) Influence of topography and specimen preparation on backscattered electron images of bone. Scanning 21(6):379–387

    Article  PubMed  CAS  Google Scholar 

  • Wolff I, van Croonenborg J J, Kemper H C, Kostense P J, Twisk J W (1999) The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre-and postmenopausal women. Osteoporos Int 9(1):1–12

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yau-Ming Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lai, YM., Chan, WC. (2007). Cortical Bone Mineral Status Evaluated by pQCT, Quantitative Backscattered Electron Imaging and Polarized Light Microscopy. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics