Skip to main content
  • 2484 Accesses

Abstract

Animal models of osteoarthritis (OA) and rheumatoid arthritis (RA) are used to study the pathogenesis of joint degeneration and evaluate potential antiarthritic drugs for clinical use. Subchondral bone change in arthritis plays an important role in the development of the disease. The study of the subchondral bone change in human arthritis is limited by the access of human tissues especially in the earlier stage. Animal models provide the possibility of studying the pathogenesis of the disease at different stages and with easier usage of tissues. The development of high-resolution micro-computed tomography (micro-CT) scanner, capable of 3D reconstruction at a resolution of 6–50 µm, enables researchers to evaluate the changes in trabecular subchondral bone in animal models of arthritis. This chapter reviews the 3D microstructure changes in OA and RA animal models, as well as describing the application of micro-CT in evaluation of subchondral bone changes using 3D and 2D methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anastassiades T, Rees-Milton K (2005) Biochemical markers for osteoarthritis: from the present to the future and back to the past. J Rheumatol 32:578–579

    PubMed  Google Scholar 

  • Bailey AJ, Mansell JP (1997) Do subchondral bone changes exacerbate or precede articular cartilage destruction in osteoarthritis of the elderly? Gerontology 43:296–304

    PubMed  CAS  Google Scholar 

  • Batiste DL, Kirkley A, Laverty S, Thain LM, Spouge AR, Gati JS, Foster PJ, Holdsworth DW (2004) High-resolution MRI and micro-CT in an ex vivo rabbit anterior cruciate ligament transection model of osteoarthritis. Osteoarthritis Cartilage 12:614–626

    Article  PubMed  Google Scholar 

  • Bendele AM, Hulman JF (1988) Spontaneous cartilage degeneration in guinea pigs. Arthritis Rheum 31:561–565

    Article  PubMed  CAS  Google Scholar 

  • Bendele AM, Bean JS, Hulman JF (1991) Passive role of articular chondrocytes in the pathogenesis of acute meniscectomy-induced cartilage degeneration. Vet Pathol 28:207–215

    PubMed  CAS  Google Scholar 

  • Borah B, Gross GJ, Dufresne TE, Smith TS, Cockman MD, Chmielewski PA, Lundy MW, Hartke JR, Sod EW (2001) Three-dimensional microimaging (MRmicro and microCT), finite element modeling, and rapid prototyping provide unique insights into bone architecture in osteoporosis. Anat Rec 265:101–110

    Article  PubMed  CAS  Google Scholar 

  • Boyd SK, Muller R, Matyas JR, Wohl GR, Zernicke RF (2000a) Early morphometric and anisotropic change in periarticular cancellous bone in a model of experimental knee osteoarthritis quantified using microcomputed tomography. Clin Biomech (Bristol, Avon) 15:624–631

    Article  CAS  Google Scholar 

  • Boyd SK, Matyas JR, Wohl GR, Kantzas A, Zernicke RF (2000b) Early regional adaptation of periarticular bone mineral density after anterior cruciate ligament injury. J Appl Physiol 89:2359–2364

    PubMed  CAS  Google Scholar 

  • Buchman SR, Sherick DG, Goulet RW, Goldstein SA (1998) Use of microcomputed tomography scanning as a new technique for the evaluation of membranous bone. J Craniomaxillofac Surg 9:48–54

    Article  CAS  Google Scholar 

  • Buckland-Wright C (2004) Subchondral bone changes in hand and knee osteoarthritis detected by radiography. Osteoarthritis Cartilage 12(Suppl A): S10–S19

    Article  PubMed  Google Scholar 

  • Burr DB, Schaffler MB (1997) The involvement of subchondral mineralized tissues in osteoarthrosis: quantitative microscopic evidence. Microsc Res Tech 37:343–357

    Article  PubMed  CAS  Google Scholar 

  • Carlson CS, Loeser RF, Jayo MJ, Weaver DS, Adams MR, Jerome CP (1994) Osteoarthritis in cynomolgus macaques: a primate model of naturally occurring disease. J Orthop Res 12:331–339

    Article  PubMed  CAS  Google Scholar 

  • Colombo C, Butler M, O’Byrne E, Hickman L, Swartzendruber D, Selwyn M, Steinetz B (1983) A new model of osteoarthritis in rabbits. I. Development of knee joint pathology following lateral meniscectomy and section of the fibular collateral and sesamoid ligaments. Arthritis Rheum 26:875–886

    Article  PubMed  CAS  Google Scholar 

  • Dedrick DK, Goldstein SA, Brandt KD, O’Connor BL, Goulet RW, Albrecht M (1993) A longitudinal study of subchondral plate and trabecular bone in cruciate-deficient dogs with osteoarthritis followed up for 54 months. Arthritis Rheum 36:1460–1467

    Article  PubMed  CAS  Google Scholar 

  • Dieppe PA, Cushnaghan J, Young P, Kirwan J (1993) Prediction of progression of joint space narrowing in osteoarthritis of the knee. Ann Rheum Dis 52:557–563

    Article  PubMed  CAS  Google Scholar 

  • Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4:3–11

    PubMed  CAS  Google Scholar 

  • Genant HK, Gordon C, Jiang Y, Lang TF, Link TM, Majumdar S (1999) Advanced imaging of bone macro and micro structure. Bone 25:149–152

    Article  PubMed  CAS  Google Scholar 

  • Goldring SR (2002) Bone and joint destruction in rheumatoid arthritis: what is really happening? J Rheumatol 65(Suppl):44–48

    CAS  Google Scholar 

  • Goldring SR, Polisson RP (1998) Bone disease in rheumatological disorders. In: Avioli L, Krane SM (eds) Metabolic bone disease, 3rd edn. Academic Press, San Diego, pp 621–635

    Google Scholar 

  • Goldring SR, Gravallese EM (2000) Pathogenesis of bone erosions in rheumatoid arthritis. Curr Opin Rheumatol 12:195–199

    Article  PubMed  CAS  Google Scholar 

  • Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown MB, Feldkamp LA (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27:375–389

    Article  PubMed  CAS  Google Scholar 

  • Gross GJ, Dufresne TE, Smith T, Cockman MD, Chmielewski PA, Combs KS (1999) Bone architecture and image synthesis. Morphologie 83:21–24

    PubMed  CAS  Google Scholar 

  • Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP (1991) Subchondral bone in osteoarthritis. Calcif Tissue Int 49:20–26

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand T, Ruegsegger P (1997) Quantification of bone microarchitecture with the structure model index. Comput Methods Biomech Biomed Engin 1:15–23

    Article  PubMed  Google Scholar 

  • Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14:1167–1174

    Article  PubMed  CAS  Google Scholar 

  • Hutton CW, Vennart W (1995) Osteoarthritis and magnetic resonance imaging: potential and problems. Ann Rheum Dis 54:237–243

    PubMed  CAS  Google Scholar 

  • Hutton CW, Higgs ER, Jackson PC (1986a) 99mTC-HMDP bone scanning in generalized osteoarthritis II: The four hour bone scan image predicts radiographic change. Ann Rheum Dis 45:622–626

    PubMed  CAS  Google Scholar 

  • Hutton CW, Higgs ER, Jackson PC (1986b) 99mTC-HMDP bone scanning in generalized osteoarthritis I: comparison of standard radiographs and four hour bone scan image of the hand. Ann Rheum Dis 45:617–621

    PubMed  CAS  Google Scholar 

  • Jimenez PA, Glasson SS, Trubetskoy OV, Haimes HB (1997) Spontaneous osteoarthritis in Dunkin Hartley guinea pigs: histologic, radiologic, and biochemical changes. Lab Anim Sci 47:598–601

    PubMed  CAS  Google Scholar 

  • Johnson LC (1962) Joint remodelling as a basis for osteoarthritis. J Am Vet Med Assoc 141:1237–1241

    Google Scholar 

  • Kapadia RD, Stroup GB, Badger AM, Koller B, Levin JM, Coatney RW, Dodds RA, Liang X, Lark MW, Gowen M (1998) Applications of micro-CT and MR microscopy to study pre-clinical models of osteoporosis and osteoarthritis. Technol Health Care 6:361–372

    PubMed  CAS  Google Scholar 

  • Kapadia RD, Badger AM, Levin JM, Swift B, Bhattacharyya A, Dodds RA, Coatney RW, Lark MW (2000) Meniscal ossification in spontaneous osteoarthritis in the guinea-pig. Osteoarthritis Cartilage 8:374–377

    Article  PubMed  CAS  Google Scholar 

  • Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res 8:833–842

    Article  PubMed  CAS  Google Scholar 

  • Li B, Aspden RM (1997) Mechanical and material properties of the subchondral bone plate from the femoral head of patients with osteoarthritis or osteoporosis. Ann Rheum Dis 56:247–254

    Article  PubMed  CAS  Google Scholar 

  • Manicourt DH, Altman RD, Williams JM, Devogelaer JP, Druetz-Van Egeren A, Lenz ME, Pietryla D, Thonar EJ (1999) Treatment with calcitonin suppresses the responses of bone, cartilage, and synovium in the early stages of canine experimental osteoarthritis and significantly reduces the severity of the cartilage lesions. Arthritis Rheum 42:1159–1167

    Article  PubMed  CAS  Google Scholar 

  • Matsui H, Shimitzu M, Tsuji H (1997) Cartilage and subchondral bone interaction in osteoarthrosis of human knee joint: a histological and histomorphometric study. Micro Res Tech 37:333–342

    Article  CAS  Google Scholar 

  • Meacock SC, Bodmer JL, Billingham ME (1990) Experimental osteoarthritis in guinea-pigs. J Exp Pathol (Oxford) 71:279–293

    CAS  Google Scholar 

  • Odgaard A, Gundersen HJ (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14:173–182

    Article  PubMed  CAS  Google Scholar 

  • Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    PubMed  CAS  Google Scholar 

  • Parisien M, Mellish RW, Silverberg SJ, Shane E, Lindsay R, Bilezikian JP, Dempster DW (1992) Maintenance of cancellous bone connectivity in primary hyperparathyroidism: trabecular strut analysis. J Bone Miner Res 7:913–919

    Article  PubMed  CAS  Google Scholar 

  • Pastoureau PC, Chomel AC, Bonnet J (1999) Evidence of early subchondral bone changes in the meniscectomized guinea pig. A densitometric study using dual-energy X-ray absorp-tiometry subregional analysis. Osteoarthritis Cartilage 7:466–473

    Article  PubMed  CAS  Google Scholar 

  • Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C (1984) Effects of mechanical loading on the tissues of the rabbit knee. J Orthop Res 2:221–234

    Article  PubMed  CAS  Google Scholar 

  • Sharp JT, Wolfe F, Mitchell DM et al. (1991) The progression of erosion and joint space narrowing scores in rheumatoid arthritis during the first twenty-five years of disease. Arthritis Rheum 34:660–668

    Article  PubMed  CAS  Google Scholar 

  • Shymkiw RC, Bray RC, Boyd SK (2001) Physiological and mechanical adaptation of periarticular cancellous bone after joint ligament injury. J Appl Physiol 90:1083–1087

    PubMed  CAS  Google Scholar 

  • Simon SR, Radin EL, Paul IL, Rose RM (1972) The response of joints to impact loading II: in vivo behaviour of subchondral bone. J Biomech 5:267–272

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Mizushima Y (1997) Osteoporosis in rheumatoid arthritis. Osteoporosis Int 7(Suppl 3): S217–S222

    Google Scholar 

  • Tchetina EV, Squires G, Poole AR (2005) Increased type II collagen degradation and very early focal cartilage degeneration is associated with upregulation of chondrocyte differentiation related genes in early human articular cartilage lesions. J Rheumatol 32:876–886

    PubMed  CAS  Google Scholar 

  • van Zeben D, Hazes JMW, Zwinderman AH et al. (1993) Factors predicting outcome of rheumatoid arthritis: results of a follow-up study. J Rheumatol 20:1288–1296

    PubMed  Google Scholar 

  • Wachsmuth L, Engelke K (2004) High-resolution imaging of osteoarthritis using micro-computed tomography. Methods Mol Med 101:231–248

    PubMed  Google Scholar 

  • Yoshioka M, Coutts RD, Amiel D, Hacker SA (1996) Characterization of a model of osteoarthritis in the rabbit knee. Osteoarthritis Cartilage 4:87–98

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, S.X. (2007). Subchondral Bone Microarchitecture Changes in Animal Models of Arthritis. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics