Skip to main content

Nanomechanics of Bone and Bioactive Bone-Cement Interfaces

  • Chapter
  • 2491 Accesses

Abstract

Nanoindentation is an ideal technique to investigate mechanical behaviour at the bone/implant interface. A viscoelasticity correction method was developed and validated for use on biological specimens. Using this new technique the nanomechanics of the interface between strontium-containing hydroxyapatite (Sr-HA) bone cement with cancellous and cortical bone were investigated under weight-bearing conditions. At 6 months after implantation, Young’s modulus and hardness at the interface between cancellous bone and Sr-HA cement were significantly higher than those at the cancellous bone and Sr-HA cement, whereas Young’s modulus and hardness at interface between cortical bone and Sr-HA cement were significantly lower than those at cortical bone, but significantly higher than Sr-HA cement These results were supported by histological observation and chemical composition. Osseointegration of Sr-HA cement with cancellous bone was observed. An apatite layer with a high content of calcium and phosphorus was found between cancellous bone and Sr-HA cement; however, no such apatite layer was observed at the interface between cortical bone and Sr-HA cement. And the contents of calcium and phosphorus of the interface were lower than those of cortical bone. The mechanical properties indicated that these two interfaces were diffused interfaces, and cancellous bone or cortical bone was grown into Sr-HA cement 6 months after the implantation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boivin G, Deloffre P, Perrat B, Panczer G, Boudeulle M, Mauras Y, Allain P, Tsouderos Y, Meunier PJ (1996) Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration. J Bone Miner Res 11:1302–1311

    Article  PubMed  CAS  Google Scholar 

  • Black J, Hastings G (eds) (1998) Cortical bone and cancellous bone. In: Handbook of biomaterial properties. New York: Chapman and Hall, pp 3–24

    Google Scholar 

  • Canalis E, Hott M, Deloffre P, Tsouderos Y, Marie PJ (1996) The divalent strontium salt S12911 enhances bone cell replication and bone formation in vitro. Bone 18:517–523

    Article  PubMed  CAS  Google Scholar 

  • Charnley J (1960). Anchorage of femoral head prosthesis to the shaft of the femur. J Bone Joint Surg 42B:28–30

    Google Scholar 

  • Chen QZ, Wong CT, Lu WW, Cheung KM, Leong JC, Luk KD (2004) Strengthening mechanisms of bone bonding to crystalline hydroxyapatite in vivo. Biomaterials 25:4243–4254

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen J, Christoffersen MR, Kolthoff N, Barenholdt O (1997) Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection. Bone 20:47–54

    Article  PubMed  CAS  Google Scholar 

  • Dalby MJ, Silvio L di, Harper EJ, Bonfield W (2001) Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement. Biomaterials 22:1739–1747

    Article  PubMed  CAS  Google Scholar 

  • Davies JE, Baldan N (1997) Scanning electron microscopy of the bone-bioactive implant interface. J Biomed Mater Res 36:429–440

    Article  PubMed  CAS  Google Scholar 

  • Dickens SH, Kelly SR, Flaim GM, Giuseppetti AA (2004) Dentin adhesion and microleakage of a resin-based calcium phosphate pulp capping and basing cement. Eur J Oral Sci 112:452–457

    Article  PubMed  CAS  Google Scholar 

  • Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1: 601

    Google Scholar 

  • El-Ghannam A, Ducheyne P, Shapiro IM (1997) Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomaterials 18:295–303

    Article  PubMed  CAS  Google Scholar 

  • El-Ghannam A, Ducheyne P, Shapiro IM (1999) Effect of serum protein adsorption on osteoblast adhesion to bioactive glass and hydroxyapatite. J Orthop Res 17:340–345

    Article  PubMed  CAS  Google Scholar 

  • Fan Z, Rho JY (2003) Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone. J Biomed Mater Res 67:208–214

    Article  CAS  Google Scholar 

  • Freeman MAR, Bradley GW, Revell PA (1982) Observation upon the interface between bone and polymethylmethacrylate cement. J Bone Joint Surg 64B:489–493

    Google Scholar 

  • Fujita H, Nakamura T, Tamura J, Kobayashi M, Katsura Y, Kokubo T, Kikutani T (1998) Bioactive bone cement: effect of the amount of glass-ceramic powder on bone-bonding strength. J Biomed Mater Res 40:145–152

    Article  PubMed  CAS  Google Scholar 

  • Fujita H, Ido K, Matsuda Y, Iida H, Oka M, Kitamura Y, Nakamura T (2000) Evaluation of bioactive bone cement in canine total hip arthroplasty. J Biomed Mater Res 49:273–288

    Article  PubMed  CAS  Google Scholar 

  • Fujita R, Yokoyamaa A, Nodasaka Y, Kohgo T, Kawasaki T (2003) Ultrastructure of ceramicbone interface using hydroxyapatite and β-tricalcium phosphate ceramics and replacement mechanism of β-tricalcium phosphate in bone. Tissue Cell 35:427–440

    Article  PubMed  CAS  Google Scholar 

  • Grynpas M, Marie JP (1990) Effects of low doses of strontium on bone quality and quantity in rats. Bone 11:313–319

    Article  PubMed  CAS  Google Scholar 

  • Guo L, Guo X, Leng Y, Cheng JCY, Zhang X (2001) Nanoindentation study of interfaces between calcium phosphate and bone in an animal spinal fusion model. J Biomed Mater Res 54:554–559

    Article  PubMed  CAS  Google Scholar 

  • Hench L, Splinter R, Greenlee T, Allen W (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Eng 2:117–141

    Google Scholar 

  • Hengsberger S, Kulik A, Zysset P (2002) Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 30:178–184

    Article  PubMed  CAS  Google Scholar 

  • Hyakuna K, Yamamuro T, Kotoura Y, Kakutani Y, Kitsugi T, Takagi H, Oka M, Kokubo T (1989) The influence of calcium-phosphate ceramics and glass-ceramics on cultured cells and their surrounding media. J Biomed Mater Res 23:1049–1066

    Article  PubMed  CAS  Google Scholar 

  • Jasty M, Maloney WJ, Bragdon CR, Haire T, Harris WH (1990) Histomorphological studies of the long-term skeletal responses to well fixed cemented femoral component. J Bone Joint Surg 72A:1220–1225

    Google Scholar 

  • Keaveny TK, Pinilla TP, Crowford RP, Kopperdahl DL, Lou A (1997) System and random errors in compression testing of trabecular bone. J Orthop Res 15:101–110

    Article  PubMed  CAS  Google Scholar 

  • Kenny SM, Buggy M (2003) Bone cements and fillers: a review. J Mater Sci Mater Med 14:923–938

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Nakamura T, Tamura J, Kokubo T, Kikutani T (1997) Bioactive bone cement: comparison of AW-GC filler with hydroxyapatite and beta-TCP fillers on mechanical and biological properties. J Biomed Mater Res 37:301–313

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi M, Takashi N, Okada Y, Fukumoto A, Furukawa T, Kato H, Kokubo T, Kobayashi M, Takashi N, Kikutani T (1998) Bioactive bone cement comparison of apatite and wollastonite containing glass-ceramic, hydroxyapatite, and beta-tricalcium phosphate fillers on bone-bonding strength. J Biomed Mater Res 42:223–237

    Article  PubMed  CAS  Google Scholar 

  • Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res 24:721734

    Google Scholar 

  • Kotani S, Fujita Y, Kitsugi T, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T (1991) Bone bonding mechanism of β-tricalcium phosphate. J Biomed Mater Res 25:1303–1315

    Article  PubMed  CAS  Google Scholar 

  • Li YW, Leong JCY, Lu WW, Luk KDK, Cheung KMC, Chiu KY, Chow SP (2000) A novel injectable bioactive bone cement for spinal surgery: a development and preclinical study. J Biomed Mater Res 52:164–170

    Article  PubMed  CAS  Google Scholar 

  • Lu JX, Gallur A, Flautre B, Anselme K, Descamps M, Thierry B, Hardouin P (1998) Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits. J Biomed Mater Res 42:357–367

    Article  PubMed  CAS  Google Scholar 

  • Lu WW, Cheung KMC, Li YW, Luk KDK, Holmes AD, Zhu QA, Leong JCY (2001) Bioactive bone cement as a principal fixture for spinal burst fracture: an in vitro biomechanical and morphologic study. Spine 26:2684–2691

    Article  PubMed  CAS  Google Scholar 

  • Marie PJ, Hott M (1986) Short-term effects of fluoride and strontium on bone formation and resorption in the mouse. Metabolism 35:547–551

    Article  PubMed  CAS  Google Scholar 

  • Masuda T, Yliheikkila PK, Felton DA, Cooper LF (1998) Generalization regarding the process and phenomena of osseointegration. Part I. In vivo studies. Int J Oral Maxillofac Implants 13:17–29

    PubMed  CAS  Google Scholar 

  • Matsuda Y, Ido K, Nakamura T, Fujita H, Yamamuro T, Oka M, Shibuya T (1997) Prosthetic replacement of the hip in dogs using bioactive bone cement. Clin Orthop 336:263–277

    Article  PubMed  Google Scholar 

  • Matsumoto A (1988) Effect of strontium chloride on bone resorption induced by prostaglan din E2 in cultured bone. Arch Toxicol 62:240–241

    Article  PubMed  CAS  Google Scholar 

  • Meunier PJ, Slosman DO, Delmas PD et al. (2002) Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosisa: 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 87:2060–2066

    Article  PubMed  CAS  Google Scholar 

  • Neo M, Kotani S, Fujita Y, Nakamura T, Yamamura T, Bando Y, Ohtsuki C, Kokubo T (1992a) Differences in ceramics-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy. J Biomed Mater Res 26:255–267

    Article  PubMed  CAS  Google Scholar 

  • Neo M, Kotani S, Fujita Y, Nakamura T, Yamamura T, Bando Y, Ohtsuki C, Kokubo T (1992b) A comparative study of ultrastructures of the interfaces between four kinds of surface-active ceramics and bone. J Biomed Mater Res 26:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Neo M, Nakamura T, Ohtsuki C, Kokubo T, Yamamuro T (1993a) Apatite formation on three kinds of bioactive material at an early stage in vivo: a comparative study by transmission electron microscopy. J Biomed Mater Res 27:999–1006

    Article  PubMed  CAS  Google Scholar 

  • Neo M, Nakaruma T, Yamamuro T, Ohtsuki C, Kokubo T (1993b) Transmission microscopic study of apatite formation on bioactive ceramics in vivo. In: Ducheyne P, Kokubo T, van Blitterswijk CA (eds) Bone-bonding biomaterials. Leiderdorp, The Netherlands: Reed Healthcare Communications, pp 111–120

    Google Scholar 

  • Ngan AHW, Wang HT, Tang B, Sze KY (2005) Correcting power-law viscoelastic effects in elastic modulus measurement using depth-sensing indentation. Int J Solids Struct 42:1831–1846

    Article  Google Scholar 

  • Ni GX, Lu WW, Chiu KY, Li ZY, Fong DYT, Luk KDK (2006) Strontium-containing hydroxyapatite (Sr-HA) bioactive cement for primary hip replacement: an in vivo study. J Biomed Mater Res 77B:409–415

    Article  CAS  Google Scholar 

  • Okada Y, Kobayashi M, Fujita H, Katsura Y, Matsuoka H, Takadama H, Kokubo T, Nakamura T (1999) Transmission electron microscopic study of interface between bioactive bone cement and bone: comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and b-tricalcium phosphate fillers Inc. J Biomed Mater Res 45:277–284

    Article  PubMed  CAS  Google Scholar 

  • Okada Y, Kobayashi M, Neo M, Kokubo T, Nakamura T (2001) Ultrastructure of the interface between bioactive composite and bone: comparison of apatite and wollastonite containing glass-ceramic filler with hydroxyapatite and β-tricalcium phosphate fillers. J Biomed Mater Res 57:101–107

    Article  PubMed  CAS  Google Scholar 

  • Okayama S, Akao M, Nakamura S, Shin Y, Higashikata M, Aoki H (1991) The mechanical properties and solubility of strontium-substituted hydroxyapatite. Biomed Mater Eng 1:11–17

    PubMed  CAS  Google Scholar 

  • Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 4:1564–1583

    Google Scholar 

  • Ooms EM, Wolke JGC, van der Waerden JPCM, Jansen JA (2002) Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res 61:9–18

    Article  PubMed  CAS  Google Scholar 

  • Pharr GM (1998) Measurement of mechanical properties by ultra-low load indentation. Mater Sci Eng 253:151–159

    Article  Google Scholar 

  • Porter AE, Botelho CM, Lopes MA, Santos JD, Best SM, Bonfield W (2004a) Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J Biomed Mater Res 69A:670–679

    Article  CAS  Google Scholar 

  • Porter AE, Patel N, Skepper JN, Best SM, Bonfield W (2004b) Effect of sintered silicate-substituted hydroxyapatite on remodeling processes at the bone-implant interface. Biomaterials 25:3303–3314

    Article  PubMed  CAS  Google Scholar 

  • Reginster JY (1997) Miscellaneous and experimental agents. Am J Med Sci 313:33–40

    Article  PubMed  CAS  Google Scholar 

  • Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–1330

    Article  PubMed  CAS  Google Scholar 

  • Senaha Y, Nakamura T, Tamura J, Kawanabe K, Iida H, Yamamuro T (1996) Intercalary replacement of canine femora using a new bioactive bone cement. J Bone Joint Surg 78B:26–31

    Google Scholar 

  • Tamura J, Kitsugi T, Iida H, Fujita H, Nakamura T, Kokubo T, Yoshihara S (1995) Bone-bonding behavior of three types of bioactive bone cement containing bioactive glass or glass-ceramic powder. Bioceramics 8:219–223

    CAS  Google Scholar 

  • Tang B, Ngan AHW (2003) Accurate measurement of tip-sample contact size during nanoindentation of viscoelastic materials. J Mater Res 18:1141–1148

    Article  CAS  Google Scholar 

  • Tang B, Ngan AHW and Lu WW (2006) Viscoelastic effects during depth-sensing indentation of cortical bone tissues. Philosophical Magazine 86:5653–5666

    Article  CAS  Google Scholar 

  • Walsh WR, Svehla MJ, Russell J, Saito M, Nakashima T, Gillies RM, Bruce W, Hori R (2004) Cemented fixation with PMMA or Bis-GMA resin hydroxyapatite cement: effect of implant surface roughness. Biomaterials 25:4929–4934

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ni, GX., Lu, W.WJ., Ngan, A.HW., Luk, K.DK. (2007). Nanomechanics of Bone and Bioactive Bone-Cement Interfaces. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics