Skip to main content
  • 2450 Accesses

Abstract

This chapter discusses drug therapy used to reduce fracture risk by influencing the material and structural properties of bone. Bone loss is slow before menopause because remodelling is slow. Bone loss accelerates after menopause because remodelling rate increases, reducing bone mineral density (BMD) and bones material rigidity. Anti-resorptive drugs reduce the rate of bone remodelling. Reconstruction the skeleton requires anabolic therapy. Parathyroid hormone (PTH) given intermittently increases bone formation on the endosteal surface increasing both cortical and trabecular thickness. Strontium ranelate reduces vertebral and non-vertebral fractures. The rate of bone remodelling does not appear to be reduced. There may be a reduction the depth of bone resorption while allowing bone formation to continue but remains uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Black DM, Greenspan SL, Ensrud KE, the PTH Study Investigators (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  PubMed  CAS  Google Scholar 

  • Cosman F, Nieves J, Zion M, Woelfert L, Luckey M, Lindsay R (2005) Daily and cyclic parathyroid hormone in women receiving alendronate. N Engl J Med 353(6):566–575

    Article  PubMed  CAS  Google Scholar 

  • Currey JD (2002) Bones: structure and mechanics. Princeton University Press, Princeton, New Jersey, pp 1–380

    Google Scholar 

  • Delmas PD (2002) Treatment of postmenopausal osteoporosis. Lancet 359:2018–2026

    Article  PubMed  CAS  Google Scholar 

  • Ettinger B, San Martin J, Crans G, Pavo I (2004) Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res 19:745–751

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM (2003) The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med 349:1216–1226

    Article  PubMed  CAS  Google Scholar 

  • Komatsubara S, Mori S, Mashiba T, Ito M, Li J, Kaji Y, Akiyama T, Miyamoto K, Cao Y, Kawanishi J, Norimatsu H (2003) Long-term treatment of incadronate disodium accumulates microdamage but improves the trabecular bone microarchitecture in dog vertebra. J Bone Miner Res 18:512–520

    Article  PubMed  CAS  Google Scholar 

  • Lips P, Courpron P. Meunier PJ (1978) Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res 10:13–17

    Article  Google Scholar 

  • Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–137

    Article  PubMed  CAS  Google Scholar 

  • Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15:613–620

    Article  PubMed  CAS  Google Scholar 

  • Meunier PJ, Slosman D, Delmas PD, Sebert JL, Brandi ML, Albanese C, Lorenc R, Pors-Nielsen S, De Vernejoul MC, Roces A, Reginster JY (2002) Strontium ranelate: dose-dependent effects in established post-menopausal vertebral osteoporosis. The Stratos 2-year randomized placebo controlled trial. J Clin Endocrinol Metab 87:2060–2066

    Article  PubMed  CAS  Google Scholar 

  • Meunier PJ, Roux C, Seeman E (2004) The effects of strontium ranelate on the risk of vertebral fracture in women with postmenopausal osteoporosis. N Engl J Med 350:459–468

    Article  PubMed  CAS  Google Scholar 

  • Neer RM, Arnaud CD, Zanchette JR (2001) Effect of parathyroid hormone (1–134) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  PubMed  CAS  Google Scholar 

  • Odvina CV, Zerwekh JE, Rao DS, Maaloof N, Gottschalk FA, Pak CYC (2005) Severely suppressed bone turnover: a potential complication of alendronate therapy. J Clin Endocrinol Metab 1294–1301

    Google Scholar 

  • Parfitt AM (1980) Morphological basis of bone mineral measurements: transient and steady state effects of treatment in osteoporosis. Mineral Electrolyte Metab 4:273–287

    Google Scholar 

  • Parfitt AM (1996) Skeletal heterogeneity and the purposes of bone remodelling: implications for the understanding of osteoporosis. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic Press, San Diego, pp 315–339

    Google Scholar 

  • Reginster JY, Seeman E, De Vernejoul (2005) Strontium ranelate reduced the risk of nonvertebral fractures in postmenopausal women with osteoporosis TROPOS study. Strontium ranelate reduces the risk of non-vertebral fractures in post-menopausal women with osteoporosis: Treatment of Peripheral Osteoporosis (TROPOS) Study. J Clin Endosc Metab 90:2816–2822

    Article  CAS  Google Scholar 

  • Seeman E (2003) Periosteal bone formation: a neglected determinant of bone strength. N Engl J Med 349:320–323

    Article  PubMed  Google Scholar 

  • Van der Linden JC, Homminga J, Verhaar JAN, Weinans H (2001) Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res 16:457–465

    Article  PubMed  Google Scholar 

  • Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S (2003) Brief report: bisphosphonate-induced osteopetrosis. N Engl J Med 349:457–463

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seeman, E. (2007). Material and Structural Basis of Bone Fragility: A Rational Approach to Therapy. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics