Skip to main content

TEM Study of Bone and Scaffold Materials

  • Chapter

Abstract

This chapter summarizes the application of transmission electron microscopy (TEM) to study the structure of normal and pathological bone, the interface between bone and scaffold materials, and the nucleation and structure of calcium phosphate on various scaffold materials. The principles of different TEM techniques, including bright-field image, dark-field image, electron diffraction, and high-resolution TEM are also briefly reviewed. The protocol of biological tissue processing for TEM is introduced. The typical TEM applications in investigation of bone and scaffold materials are high-lighted as reference for related study and application.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carter DH, Scully AJ, Heaton DA, Young MPJ, Aaron JE (2002) Effect of deproteination on bone mineral morphology: implications for biomaterials and aging. Bone 31:389–395

    Article  PubMed  CAS  Google Scholar 

  • Champeness PE (2001) Electron diffraction in the transmission electron microscopy. Bios, UK

    Google Scholar 

  • Chang CK, Mao DL, Wu JS (2000) Characteristics of crystals precipitated in sintered apatite/wollastonite glass ceramics. Ceramics Int 26:779–785

    Article  CAS  Google Scholar 

  • Chappard D, Gaborit NR, Filmon R, Audran M, Basle MF (1998) Increased nucleolar organizer regions in osteoblast nuclei of Paget’s bone disease. Bone 22:45–49

    Article  PubMed  CAS  Google Scholar 

  • De Lange GL, De Putter C, De Wijs FlJA (1990) Histological and ultrastructure appearance of the hydroxyapatite-bone interface. J Biomed Mater Res 24:829–845

    Article  PubMed  Google Scholar 

  • Feng QL, Wang H, Cui FZ, Kim TN (1999) Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment. J Crystal Growth 200:550–557

    Article  CAS  Google Scholar 

  • Gross U, Brandes J, Strunz V, Bab I, Sela J (1981) The ultrastructure of the interface between a glass ceramic and bone. J Biomed Mater Res 15:291–305

    Article  PubMed  CAS  Google Scholar 

  • Kong XD, Sun XD, Lu JB, Cui FZ (2005) Mineralization of calcium phosphate in reverse microemulsion. Curr Appl Phys 5:519–521

    Article  Google Scholar 

  • Leng Y, Chen JY, Qu SX (2003) TEM study of calcium phosphate precipitation on HA/TCP ceramcics. Biomaterials 24:2125–2131

    Article  PubMed  CAS  Google Scholar 

  • Lees S (1996) A model for the ultrastructure of mineralized tissue. Bone 19:148S

    Article  Google Scholar 

  • Li G, Dickson GR, Marsh DR, Simpson H (2003) Rapid new bone tissue remodeling during distraction osteogenesis is associated with apoptosis. J Orthop Res 21:28–35

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Leng Y (2004) TEM study of calcium phosphate precipitation on bioactive titanium surfaces. Biomaterials 25:1779–1786

    Article  PubMed  CAS  Google Scholar 

  • Murai K, Takeshita F, Ayukawa Y, Kiyoshima T, Suetsugu T, Tanaka T (1996) Light and electron microscopic studies of bone-titanium interface in the tibiae of young and mature rats. J Biomed Mater Res 30:523–533

    Article  PubMed  CAS  Google Scholar 

  • Neo M, Kotani S, Fujita Y, Nakamura T, Yamamuro T, Bando Y, Ohtsuki C, Kokubo T (1992a) Difference in ceramic-bone interface between surface-active ceramics and resorbable ceramics: a study by scanning and transmission electron microscopy. J Biomed Mater Res 26:255–267

    Article  PubMed  CAS  Google Scholar 

  • Neo M, Kotani S, Nakamura T, Yamamuro T, Ohtsuki C, Kokubo T, Bando Y (1992b) A comparative study of ultrastructures of the interface between four kinds of surface-active ceramic and bone. J Biomed Mater Res 26:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Porter AE, Nalla RK, Minor A, Jinschek JR, Kisielowski C, Radmilovic V, Kinney JH, Tomsia AP, Ritchie RO (2005) A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials 26:7650–7660

    Article  PubMed  CAS  Google Scholar 

  • Qu SX, Leng Y, Guo X, Cheng JCY, Chen WQ, Yang ZJ, Zhang XD (2002) Histological and ultrastructural analysis of heterotopic osteogenesis in porous calcium phosphate ceramics. J Mater Sci Let 21:153–155

    Article  CAS  Google Scholar 

  • Roceri N, Falini G, Sidoti MC, Tampieri E, Landi M, Sandri B, Parma A (2003) Biologically inspired growth of hydroxyapatite nanocrystals inside self-assembled collagen fibers. Mater Sci Eng C23:441–446

    Google Scholar 

  • Rosen VB, Hobbs LW, Specror M (2002) The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatite used as bone graft substitute materials. Biomaterials 23:921–928

    Article  PubMed  Google Scholar 

  • Rubin MA, Jasiuk I (2005) The TEM characterization of the lamellar structure of osteoporotic human trabecular bone. Micron 36:653–664

    Article  PubMed  Google Scholar 

  • Rubin MA, Jasiuk I, Taylor J, Rubin J, Ganey T, Apkarian R (2003) TEM analysis of the nanostructure of normal and osteoporotic human trabecular bone. Bone 33:270–282

    Article  PubMed  Google Scholar 

  • Sahar ND, Hong SI, Kohn DH (2005) Micro-and nano-structural analyses of damage in bone. Micron 36:617–629

    Article  PubMed  Google Scholar 

  • Sautier JM, Nefussi JR, Forest N (1992) Surface-active biomaterials in osteoblast culture: an ultrastructural study. Biomaterials 13:400–402

    Article  PubMed  CAS  Google Scholar 

  • Serre GM, Papillard M, Chavassieux P, Boivin G (1993) In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: an ultrastructure comparison of three types of biomaterials. Biomaterials 14:97–106

    Article  PubMed  CAS  Google Scholar 

  • Steflik DE, Corpe RS, Lake FT, Young TR, Sisk AL, Parr GR, Hames PJ, Berkery DJ (1990) Ultrastructure analyses of the attachment (bonding) zone between bone and implanted biomaterials. J Biomed Mater Res 39:613–620

    Google Scholar 

  • Su X, Sun K, Cui FZ, Landis WJ (2003) Organization of apatite crystals in human wove bone. Bone 32:150–162

    Article  PubMed  CAS  Google Scholar 

  • Tracy BM, Doremus RH (1984) Direct electron microscopy studies of the bone-hydroxylapatite interface. J Biomed Mater Res 18:719–726

    Article  PubMed  CAS  Google Scholar 

  • Willams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum, New York

    Google Scholar 

  • Xin RL, Yang Y, Chen JY, Zhang QY (2005) A comparative study of calcium phosphate formation on bioceramics in vitro and in vivo. Biomaterials 26:6477–6486

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Xin Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qu, SX., Lu, X., Leng, Y. (2007). TEM Study of Bone and Scaffold Materials. In: Qin, L., Genant, H.K., Griffith, J.F., Leung, K.S. (eds) Advanced Bioimaging Technologies in Assessment of the Quality of Bone and Scaffold Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-45456-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-45456-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-45454-0

  • Online ISBN: 978-3-540-45456-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics